### ?

## Tori in the Cremona groups

arxiv.org.
math.
Cornell University
,
2012.
No. arXiv:1207.5205v3.

We classify up to conjugacy the subgroups of certain types in the full, in the affine, and in the special affine Cremona groups. We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the Linearization Problem generalizing to disconnected groups Bialynicki-Birula's results of 1966-67. We prove ``fusion theorems'' for n-dimensional tori in the affine and in the special affine Cremona groups of rank n. In the final section we introduce and discuss the notions of Jordan decomposition and torsion prime numbers for the Cremona groups.

Popov V., Izvestiya. Mathematics 2013 Vol. 77 No. 4 P. 742-771

We classify up to conjugacy the subgroups of certain types in the full, affine, and special affine Cremona groups.
We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the linearization problem by generalizing Bia{\l}ynicki-Birula's results of 1966--67 to disconnected groups.
We prove fusion theorems for n-dimensional tori in ...

Added: August 23, 2013

Popov V., Problems for the problem session / Centro Internazionale per la Ricerca Matematica. Series CIRM "Electronic preprint server". 2012. No. нет.

Some problems on the structure of the Cremona groups formulated (with comments) by the author at the International conference Birational and Affine Geometry, Levico Terme (Trento), 29.10.12--03.11.12 ...

Added: January 9, 2013

Popov V., Известия РАН. Серия математическая 2019 Т. 84 № 4 С. 194-225

The rst group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: July 31, 2019

Cheltsov I., Shramov K., Transactions of the American Mathematical Society 2014 Vol. 366 No. 3 P. 1289-1331

We propose a new method to study birational maps between Fano varieties based on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four Fano threefolds acted on by the group A6. As an application, we obtain that the Cremona group of rank 3 has at least five non-conjugate subgroups isomorphic to ...

Added: October 10, 2013

Trepalin A., Central European Journal of Mathematics 2014 Vol. 12 No. 2 P. 229-239

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary ...

Added: December 3, 2013

Cheltsov I., Shramov K., Transformation Groups 2012 Vol. 17 No. 2 P. 303-350

We study the action of the Klein simple group PSL2(F7 ) consisting of 168 elements on two rational threefolds: the three-dimensional projective space and a smooth Fano threefold X of anticanonical degree 22 and index 1. We show that the Cremona group of rank three has at least three non-conjugate subgroups isomorphic to PSL2(F7 ). As a ...

Added: August 30, 2012

Prokhorov Y., Springer Proceedings in Mathematics & Statistics 2014 Vol. 79 P. 215-229

We give a sharp bound for orders of elementary abelian 2-groups of birational automorphisms of rationally connected threefolds. ...

Added: January 24, 2014

Cheltsov I., Известия РАН. Серия математическая 2014 Т. 78 № 2 С. 167-224

We prove two new local inequalities for divisors on smooth surfaces and consider several applications of these inequalities. ...

Added: December 6, 2013

Popov V., Математические заметки 2019 Т. 105 № 4 С. 589-591

It is shown that the main result of N. R. Wallach, Principal orbit type theorems for reductive algebraic group actions and the Kempf–Ness Theorem, arXiv:1811.07195v1 (17 Nov 2018), is a special case of a more general statement, which can be deduced, using a short argument, from the classical Richardson and Luna theorems. ...

Added: September 29, 2019

Prokhorov Y., Известия РАН. Серия математическая 2013 Т. 77 № 3 С. 199-222

We study elements $\tau$ of order two in the birational automorphism groups of rationally connected three-dimensional algebraic varieties such that there exists a non-uniruled divisorial component of the $\tau$-fixed point locus. Using the equivariant minimal model program, we give a rough classification of such elements. ...

Added: July 1, 2013

Prokhorov Y., On stable conjugacy of finite subgroups of the plane Cremona group, II / Cornell University. Series math "arxiv.org". 2013.

We prove that, except for a few cases, stable linearizability of finite subgroups of the plane Cremona group implies linearizability. ...

Added: October 10, 2013

Prokhorov Y., Transactions of the American Mathematical Society 2014 Vol. 366 No. 3 P. 1289-1331

We propose a new method to study birational maps between Fano varieties based on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four Fano threefolds acted on by the group A6. As an application, we obtain that the Cremona group of rank 3 has at least five non-conjugate subgroups isomorphic to ...

Added: April 9, 2014

Trepalin A., Central European Journal of Mathematics 2014

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary ...

Added: October 14, 2013

Popov V., Математические заметки 2017 Т. 102 № 1 С. 72-80

Мы доказываем, что аффинно-треугольные подгруппы являются борелевскими подгруппами групп Кремоны. ...

Added: May 3, 2017

Prokhorov Y., Shramov K., Jordan constant for Cremona group of rank 3 / Cornell University. Series arXiv "math". 2016.

We give explicit bounds for Jordan constants of groups of birational automorphisms of rationally connected threefolds over fields of zero characteristic, in particular, for Cremona groups of ranks 2 and 3. ...

Added: September 26, 2016

Feigin E., Selecta Mathematica, New Series 2012 Vol. 18 No. 3 P. 513-537

Let Fλ be a generalized flag variety of a simple Lie group G embedded into the projectivization of an irreducible G-module Vλ. We define a flat degeneration Fλa, which is a GaM variety. Moreover, there exists a larger group Ga acting on Fλa, which is a degeneration of the group G. The group Ga contains ...

Added: August 31, 2012

Kotenkova P., Beitrage zur Algebra und Geometrie 2014 Vol. 55 No. 2 P. 621-634

Let X be a normal affine algebraic variety with regular action of a torus T and T ⊂ T be a subtorus. We prove that each root of X with respect to T can be obtained by restriction of some root of X with respect to T. This allows to get an elementary proof of ...

Added: September 17, 2015

Popov V., Известия РАН. Серия математическая 2013 Т. 77 № 4 С. 103-134

We classify up to conjugacy the subgroups of certain types in the full, in the affine, and in the special affine Cremona groups.
We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the Linearization Problem generalizing to disconnected groups Bialynicki-Birula's results of 1966--67. We prove ``fusion theorems'' ...

Added: June 3, 2013

Trepalin A., International Journal of Mathematics 2019 Vol. 30 No. 11

Let $\ka$ be any field of characteristic zero, $X$ be a del Pezzo surface and $G$ be a finite subgroup in $\Aut(X)$. In this paper we study when the quotient surface $X / G$ can be non-rational over $\ka$. Obviously, if there are no smooth $\ka$-points on $X / G$ then it is not $\ka$-rational. ...

Added: October 19, 2019

Popov V., On conjugacy of stabilizers of reductive group actions / Cornell University. Series math "arxiv.org". 2019.

It is shown that the main result of N. R. Wallach, Principal orbit type theorems for reductive algebraic group actions and the Kempf--Ness Theorem, arXiv:1811.07195v1 (17 Nov 2018) is a special case of a more general statement, which can be deduced, using a short argument, from the classical Richardson and Luna theorems. ...

Added: January 31, 2019

Oberwolfach: European Mathematical Society Publishing house, 2012

В сборнике печатаются труды конференций Математического Института Обервольфаха. ...

Added: November 17, 2012

Lerman L., Trifonov K. N., Dynamical Systems 2020 Vol. 35 No. 4 P. 609-624

We study topological properties of automorphisms of 4-dimensional torus generatedby integer matrices being symplectic either with respect to the standard symplecticstructure in R4 or w.r.t. a nonstandard symplectic structure generated by an integer skew-symmetric nondegenerate matrix. Such symplectic matrix generates a partially hyperbolic automorphism of the torus, if its eigenvalues are a pair of reals outsidethe unit circle and ...

Added: September 16, 2020

Popov V., Jordan groups and automorphism groups of algebraic varieties / Cornell University. Series math "arxiv.org". 2013. No. 1307.5522.

This is an expanded version of my talk at the workshop ``Groups of Automorphisms in Birational and Affine Geometry'', October 29–November 3, 2012, Levico Terme, Italy. The first section is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. ...

Added: July 21, 2013

Popov V., Izvestiya: Mathematics, England 2019 Vol. 83 No. 4 P. 830-859

The first group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: September 29, 2019