### Working paper

## A dynamical system in the space of convex quadrangles

Using the tools of the Markov Decision Processes, we justify the dynamic programming approach to the optimal impulse control of deterministic dynamical systems. We prove the equivalence of the integral and diﬀerential forms of the optimality equation. The theory is illustrated by an example from mathematical epidemiology. The developed methods can be also useful for the study of piecewise deterministic Markov processes.

Building of adequate dynamical models of microblogging social networks is a topical task that is of interest from both theoretical and practical aspects. Experimental and theoretical results of studies related to choice of the adequate model are presented. The choice was made between two models: a nonlinear dynamical system and a nonlinear random dynamical system. By results of the fractal analysis of observable network time series and defining their probability density function it was established that the nonlinear random dynamical system was more adequate than the nonlinear dynamical system. The character of the observable time series was also explored. The possibility that microblogging social networks can be analyzed by means of Tsallis entropy and self-organized criticality is examined.

We suggest a universal map capable of recovering the behavior of a wide range of dynamical systems given by ODEs. The map is built as an artificial neural network whose weights encode a modeled system. We assume that ODEs are known and prepare training datasets using the equations directly without computing numerical time series. Parameter variations are taken into account in the course of training so that the network model captures bifurcation scenarios of the modeled system. The theoretical benefit from this approach is that the universal model admits applying common mathematical methods without needing to develop a unique theory for each particular dynamical equations. From the practical point of view the developed method can be considered as an alternative numerical method for solving dynamical ODEs suitable for running on contemporary neural network specific hardware. We consider the Lorenz system, the Rцssler system and also the Hindmarch – Rose model. For these three examples the network model is created and its dynamics is compared with ordinary numerical solutions. A high similarity is observed for visual images of attractors, power spectra, bifurcation diagrams and Lyapunov exponents.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.