### ?

## Graph potentials and moduli spaces of rank two bundles on a curve

Cornell University
,
2020.
No. 2009.05568.

Galkin S., Belmans P., Mukhopadhyay S.

We introduce graph potentials, which are Laurent polynomials associated to (colored) trivalent graphs. These graphs encode degenerations of curves to rational curves, and graph potentials encode degenerations of the moduli space of rank 2 bundles with fixed determinant. We show that the birational type of the graph potential only depends on the homotopy type of the colored graph, and thus define a topological quantum field theory. By analyzing toric degenerations of the moduli spaces we explain how graph potentials are related to these moduli spaces in the setting of mirror symmetry for Fano varieties. On the level of enumerative mirror symmetry this shows how invariants of graph potentials are related to Gromov-Witten invariants of the moduli space. In the context of homological mirror symmetry we formulate a conjecture regarding the shape of semiorthogonal decompositions for the derived category. Studying the properties of graph potentials we provide evidence for this conjecture. Finally, by studying the Grothendieck rings of varieties and categories we will give further geometric evidence.

Keywords: зеркальная симметрияконформные блокиинтегрируемые системыслучайные блужданияsemiorthogonal decompositionsмутацияtopological quantum field theoryintegrable systemsмодели Ландау-ГинзбургаHilbert spacecluster algebrasLaurent phenomenonmirror symmetryкластерные алгебрыфеномен Лоранаторические вырождениякластерное преобразованиеrandom walksBessel functionsфункции Бесселякольцо Гротендика многообразийquantum periodквантовый периодbirational transformationбирациональное преобразованиеLandau-Ginzburg modelsпространства модулей n-угольниковпространство модулей полустабильных пучковполуортогональные разложениякластерные многообразияGrothendieck rings of varietiesmutationsалгебраические кривые, пространства модулейmoduli spaces of vector bundles on algebraic curvesSU(2)conformal blockstoric degenerationsгильбертово пространствоWDVV equationsполная положительностьtotal positivitytrivalent graphscharacter varietiesDonaldson-Floer theoriesmonotone Lagrangian torimoduli space of spherical polygonsтривалентные графымногообразия характеровтопологические квантовые теории полятеории Дональдсона-Флоерамонотонные лагранжевы торыуравнения ВДВВсферические многоугольники

Cruz Morales J. A., Galkin S., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2013 Vol. 9 No. 005 P. 1-13

In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52]. ...

Added: May 27, 2013

Coates T., Corti A., Galkin S. et al., Geometry and Topology 2016 Vol. 20 No. 1 P. 103-256

The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by ...

Added: November 18, 2014

Coates T., Galkin S., Kasprzyk A. et al., / Cornell University. Series math "arxiv.org". 2014. No. 1406.4891.

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles. ...

Added: June 20, 2014

Coates T., Galkin S., Kasprzyk A. et al., Experimental Mathematics 2020 Vol. 29 No. 2 P. 183-221

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles. ...

Added: September 1, 2018

Ilten N. O., Lewis J., Victor Przyjalkowski, Journal of Algebra 2013 Vol. 374 P. 104-121

We show that every Picard rank one smooth Fano threefold has a weak Landau–Ginzburg model coming from a toric degeneration. The fibers of these Landau–Ginzburg models can be compactified to K3 surfaces with Picard lattice of rank 19. We also show that any smooth Fano variety of arbitrary dimension which is a complete intersection of ...

Added: July 2, 2013

Akhtar M., Coates T., Galkin S. et al., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2012 Vol. 8 No. 094 P. 1-707

Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with ...

Added: September 14, 2013

Galkin S., Iritani H., / Cornell University. Series math "arxiv.org". 2015. No. 1508.00719.

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class G_F associated to Euler's Γ-function. We illustrate in ...

Added: August 5, 2015

Blank M., Nonlinearity 2014 Vol. 27 No. 5 P. 953-971

We discuss conditions for unique ergodicity of a collective random walk on a continuous circle. Individual particles in this collective motion perform independent (and different in general) random walks conditioned by the assumption that the particles cannot overrun each other. Additionally to sufficient conditions for the unique ergodicity we discover a new and unexpected way ...

Added: November 21, 2014

Iliev A., Katzarkov L., Victor Przyjalkowski, Proceedings of the Edinburgh Mathematical Society 2014 Vol. 57 P. 145-173

This paper suggests a new approach to questions of rationality of threefolds based on category theory. Following M. Ballard, D. Favero, L. Katzarkov (ArXiv:1012.0864) and D. Favero, L. Katzarkov (Noether--Lefschetz Spectra and Algebraic cycles, in preparation) we enhance constructions from A. Kuznetsov (arXiv:0904.4330) by introducing Noether--Lefschetz spectra --- an interplay between Orlov spectra (C. Oliva, ...

Added: July 2, 2013

Coates T., Corti A., Galkin S. et al., / Cornell University. Series math "arxiv.org". 2012. No. 1212.1722.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: September 14, 2013

Gusein-Zade S., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2020 Vol. 16 No. 051 P. 1-15

P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror symmetric Calabi–Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group
of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal ...

Added: October 27, 2020

Marshakov A., Fock V., / Cornell University. Series math "arxiv.org". 2014.

We describe a class of integrable systems on Poisson submanifolds of the affine Poisson-Lie groups PGLˆ(N), which can be enumerated by cyclically irreducible elements the co-extended affine Weyl groups (Wˆ×Wˆ)♯. Their phase spaces admit cluster coordinates, whereas the integrals of motion are cluster functions. We show, that this class of integrable systems coincides with the ...

Added: October 29, 2014

Nirov Khazret S., Razumov A. V., Journal of Geometry and Physics 2017 Vol. 112 P. 1-28

A detailed construction of the universal integrability objects related to the integrable
systems associated with the quantum loop algebra Uq(L(sl2)) is given. The full proof of the
functional relations in the form independent of the representation of the quantum loop
algebra on the quantum space is presented. The case of the general gradation and general
twisting is treated. The ...

Added: January 29, 2018

Derbyshev A. E., Povolotsky A. M., Priezzhev V. B., Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 2015 Vol. 91 P. 022125

The generalized totally asymmetric exclusion process (TASEP) [J. Stat. Mech. (2012) P05014] is an integrable generalization of the TASEP equipped with an interaction, which enhances the clustering of particles. The process interpolates between two extremal cases: the TASEP with parallel update and the process with all particles irreversibly merging into a single cluster moving as ...

Added: February 19, 2015

Krichever I. M., Функциональный анализ и его приложения 2012 Т. 46 № 2 С. 37-51

Using meromorphic differentials with real periods, we prove Arbarello's conjecture that any compact complex cycle of dimension g−n in the moduli space M_g of smooth algebraic curves of genus g must intersect the locus of curves having a Weierstrass point of order at most n. ...

Added: April 17, 2014

Povolotsky A. M., Journal of Statistical Mechanics: Theory and Experiment 2019 No. 074003 P. 1-22

We establish the exact laws of large numbers for two time additive quantities in the raise and peel model, the number of tiles removed by avalanches and the number of global avalanches happened by given time. The validity of conjectures for the related stationary state correlation functions then follow. The proof is based on the ...

Added: October 8, 2019

Ebeling W., Gusein-Zade S., International Mathematics Research Notices 2021 Vol. 2021 No. 16 P. 12305-12329

A.Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a "non-abelian" generalization of the statement about the equivariant Saito duality ...

Added: August 26, 2021

Buryak A., Dubrovin B., Guere J. et al., International Mathematics Research Notices 2020 Vol. 2020 No. 24 P. 10381-10446

In this paper we study various aspects of the double ramification (DR) hierarchy, introduced by the 1st author, and its quantization. We extend the notion of tau-symmetry to quantum integrable hierarchies and prove that the quantum DR hierarchy enjoys this property. We determine explicitly the genus 1 quantum correction and, as an application, compute completely the quantization ...

Added: April 21, 2020

Cheltsov I., Przyjalkowski V., / Cornell University. Series arXiv "math". 2018.

We verify Katzarkov-Kontsevich-Pantev conjecture for Landau-Ginzburg models of smooth Fano threefolds. ...

Added: December 3, 2018

Khoroshkin S. M., Tsuboi Z., Journal of Physics A: Mathematical and Theoretical 2014 Vol. 47 P. 1-11

We consider the 'universal monodromy operators' for the Baxter Q-operators. They are given as images of the universal R-matrix in oscillator representation. We find related universal factorization formulas in the Uq(\hat{sl}(2)) case. ...

Added: December 8, 2014

Bershtein M., Gonin R., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2020 Vol. 16 P. 077

We study certain representations of quantum toroidal gl1 algebra for q=t. We construct explicit bosonization of the Fock modules F^{(n′,n)}_u with nontrivial slope n′/n. As a vector space, it is naturally identified with the basic level 1 representation of affine gln. We also study twisted W-algebras of sln acting on these Fock modules.As an application, ...

Added: October 31, 2020

Ionov A., / Cornell University. Series arXiv:1504.07930 "math.arxiv". 2015.

Cardy-Frobenius algebra is the algebraic structure on the space of states in open-closed topological field theory. We prove that every semisimple super Cardy-Frobenius algebras is the direct sum of the super Cardy-Frobenius algebras of three simple types. We also apply our results to singularity theory via Landau-Ginzburg models and matrix factorizations. ...

Added: November 8, 2016

Marshall I., International Mathematics Research Notices 2015 Vol. 18 P. 8925-8958

A Poisson structure is defined on the space {\mathcal {W}} of twisted polygons in {\mathbb {R}}^{\nu }. Poisson reductions with respect to two Poisson group actions on {\mathcal {W}} are described. The \nu =2 and \nu =3 cases are discussed in detail. Amongst the Poisson structures arising in examples are to be found the lattice ...

Added: November 28, 2014

Coates T., Corti A., Galkin S. et al., , in : European Congress of Mathematics Kraków, 2 – 7 July, 2012. : Zürich : European Mathematical Society Publishing house, 2014. Ch. 16. P. 285-300.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: February 19, 2014