Working paper
Some parabolic equations for measures and Gaussian semigroups
An example of Schrodinger and Klein-Gordon equations with fast oscillating coefficients is used to show that they can be averaged by an adiabatic approximation based on V.P. Maslov's operator method.
We consider a fractional 0-1 programming problem arising in manufacturing. The problem consists in clustering of machines together with parts processed on these machines into manufacturing cells so that intra-cell processing of parts is maximized and inter-cell movement is minimized. This problem is called Cell Formation Problem (CFP) and it is an NP-hard optimization problem with Boolean variables and constraints and with a fractional objective function. Because of its high computational complexity there are a lot of heuristics developed for it. In this paper we suggest a branch and bound algorithm which provides exact solutions for the CFP with a variable number of cells and grouping efficacy objective function. This algorithm finds optimal solutions for 21 of the 35 popular benchmark instances from literature and for the remaining 14 instances it finds good solutions close to the best known.
Filtration describes a variety of the construction complex problems: strengthening loose soil to create a solid foundation, the movement of groundwater with solid impurities near underground structures, and many others. A model of two-sized deep bed filtration particles moving with different velocities in a porous medium with three-size pores is considered. The competition of pores and various size particles for deposit formation is modeled. Solutions are constructed at the porous medium inlet and on the concentrations front of the fast particles. For constant filtration coefficients, a global exact solution is obtained. Numerical calculation illustrates the evolution of the filtration process.
In this paper, we consider the spectral problem for the magnetic Schrödinger operator on the 2-D plane (x1, x2) with the constant magnetic field normal to this plane and with the potential V having the form of a harmonic oscillator in the direction x1 and periodic with respect to variable x2. Such a potential can be used for modeling a long molecule. We assume that the magnetic field is quite large, this allows us to make the averaging and to reduce the original problem to a spectral problem for a 1-D Schrödinger operator with effective periodic potential. Then we use semiclassical analysis to construct the band spectrum of this reduced operator, as well as that of the original 2-D magnetic Schrödinger operator.
This communication is devoted to establishing the very first steps in study of the speed at which the error decreases while dealing with the based on the Chernoff theorem approximations to one-parameter semigroups that provide solutions to evolution equations.
A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traffic is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the final node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a finite-dimensional system of differential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of differential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.