### ?

## Del Pezzo surfaces with infinite automorphism groups

Cornell University
,
2020.

Prokhorov Y., Cheltsov I.

We classify del Pezzo surfaces with Du Val singularities that have infinite automorphism groups, and describe the connected components of their automorphisms groups.

Publication based on the results of:

Zhukova N., Moscow Mathematical Journal 2018

We introduce a category of rigid geometries on singular spaces which
are leaf spaces of foliations and are considered as leaf manifolds. We
single out a special category F_0 of leaf manifolds containing the orbifold
category as a full subcategory. Objects of F_0 may have non-Hausdorff
topology unlike the orbifolds. The topology of some objects of F_0 does
not satisfy ...

Added: April 2, 2018

Prokhorov Y., Shramov K., ASIAN JOURNAL OF MATHEMATICS 2020 Vol. 24 No. 2 P. 355–368

We prove that automorphism groups of Inoue and primary Kodaira surfaces are Jordan. ...

Added: November 5, 2020

Nina I. Zhukova, Anna Yu. Dolgonosova .., Central European Journal of Mathematics 2013 Vol. 11 No. 12 P. 2076–2088

The category of foliations is considered. In this category
morphisms are differentiable mappings transforming leaves of one
foliation into leaves of the other foliation.
We proved that the automorphism group of the foliations
admitting a transverse linear connection is an infinite-dimensional
Lie group modeled on $LF$-spaces. This result extends the corresponding
result of Macias-Virgos and Sanmartin for Riemannian foliations.
In particular, our ...

Added: September 28, 2014

Shramov K., Prokhorov Y., / Cornell University. Series arXiv "math". 2019.

We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kaehler manifold of ...

Added: November 19, 2019

Cheltsov I., Yanir A. R., Zhang K., Selecta Mathematica, New Series 2019 Vol. 25: 34 P. 1–36

The purpose of this article is to develop techniques for estimating basis log canonical thresholds on logarithmic surfaces. To that end, we develop new local intersection estimates that imply log canonicity. Our main motivation and application is to show the existence of Kähler–Einstein edge metrics on all but finitely many families of asymptotically log del ...

Added: June 3, 2019

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2021. No. 2106.02072.

For each integer n>0, we construct a series of irreducible algebraic varieties X, for which the automorphism group Aut(X) contains as a subgroup the automorphism group Aut(F_n) of a free group F_n of rank n. For n > 1, such groups Aut(X) are nonamenable, and for n > 2, they are nonlinear and contain the ...

Added: June 7, 2021

Shramov K., Przyjalkowski V., Proceedings of the Steklov Institute of Mathematics 2019 Vol. 307 P. 198–209

We show that smooth well-formed weighted complete intersections have finite automorphism groups, with several obvious exceptions. ...

Added: August 12, 2020

Avilov A., Математические заметки 2020 Т. 107 № 1 С. 3–10

The forms of the Segre cubic over non-algebraically closed fields, their automorphisms groups, and equivariant birational rigidity are studied. In particular, it is shown that all forms of the Segre cubic over any field have a point and are cubic hypersurfaces. ...

Added: May 11, 2020

Nikolay Konovalov, / Cornell University. Series "Working papers by Cornell University". 2022. No. 2202.07507.

Let $V_{n,d}$ be the variety of equations for hypersurfaces of degree $d$ in $\mathbb{P}^n(\mathbb{C})$ with singularities not worse than simple nodes. We prove that the orbit map $G'=SL_{n+1}(\mathbb{C}) \to V_{n,d}$, $g\mapsto g\cdot s_0$, $s_0\in V_{n,d}$ is surjective on the rational cohomology if $n>1$, $d\geq 3$, and $(n,d)\neq (2,3)$. As a result, the Leray-Serre spectral sequence ...

Added: September 12, 2022

Popov V. L., Zarhin Y., / Cornell University. Series math "arxiv.org". 2018. No. 1808.01136.

We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\mathcal L(K)$ generated by ${\rm Aut} (K)$ and multipli\-ca\-tions by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are ...

Added: August 8, 2018

Sheina K., / Cornell University. Series arXiv "math". 2020. No. 04348v1.

The basic automorphism group of a Cartan foliation (M, F) is the quotient group of the automorphism group of (M, F) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates ...

Added: December 9, 2020

Tokyo: American Mathematical Society, World Scientific, 2017.

Preface
The workshop “Algebraic Varieties and Automorphism Groups” was held at the Research Institute of Mathematical Sciences (RIMS), Kyoto University during July 7-11, 2014. There were over eighty participants including twenty people from overseas Canada, France, Germany, India, Korea, Poland, Russia, Singapore, Switzerland, and USA.
Recently, there have been remarkable developments in algebraic geometry and related fields, ...

Added: July 12, 2017

Shramov K., European Journal of Mathematics 2019

We show that automorphism groups of Hopf and Kodaira surfaces have unbounded
finite subgroups. For elliptic fibrations on Hopf, Kodaira, bielliptic, and K3 surfaces,
we make some observations on finite groups acting along the fibers and on the base
of such a fibration. ...

Added: December 11, 2019

Lunts V., Przyjalkowski V., Advances in Mathematics 2018 Vol. 329 P. 189–216

We consider the conjectures of Katzarkov, Kontsevich, and Pantev
about Landau--Ginzburg Hodge numbers associated to tamely compactifiable Landau--Ginzburg models. We test these conjectures
in case of dimension two, verifying some and giving a counterexample to the other. ...

Added: February 23, 2018

Vladimir L. Popov, Springer Proceedings in Mathematics & Statistics 2014 Vol. 79 P. 185–213

This is an expanded version of my talk at the workshop
``Groups of Automorphisms in Birational and Affine Geometry'',
October 29–November 3, 2012, Levico Terme, Italy.
The first section is focused on Jordan groups in abstract setting,
the second on that in the settings of automorphisms groups and
groups of birational self-maps of algebraic varieties.
The appendix is an expanded version ...

Added: April 28, 2014

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2014. No. 1401.0278.

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: January 3, 2014

Kuyumzhiyan K., Proceedings of the American Mathematical Society 2020 No. 148 P. 3723–3731

We prove the conjecture of Berest-Eshmatov-Eshmatov by showing that the group of automorphisms of a product of Calogero-Moser spaces C_n_i, where the n_i are pairwise distinct, acts m-transitively for each m. ...

Added: August 18, 2020

Avilov A., Sbornik Mathematics 2016 Vol. 307 No. 3 P. 315–330

We prove that any G-del Pezzo threefold of degree 4, except for a one-parameter family and four distinguished cases, can be equivariantly reconstructed to the projective space ℙ3, a quadric Q ⊂ ℙ4 , a G-conic bundle or a del Pezzo fibration. We also show that one of these four distinguished varieties is birationally rigid ...

Added: July 6, 2016

Prokhorov Y., Shramov K., / Cornell University. Series arXiv "math". 2018.

We prove that automorphism groups of Inoue and primary Kodaira surfaces are Jordan. ...

Added: June 8, 2019

Trepalin A., International Journal of Mathematics 2019 Vol. 30 No. 11

Let $\ka$ be any field of characteristic zero, $X$ be a del Pezzo surface and $G$ be a finite subgroup in $\Aut(X)$. In this paper we study when the quotient surface $X / G$ can be non-rational over $\ka$. Obviously, if there are no smooth $\ka$-points on $X / G$ then it is not $\ka$-rational. ...

Added: October 19, 2019

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2013. No. 1307.5522.

This is an expanded version of my talk at the workshop ``Groups of Automorphisms in Birational and Affine Geometry'', October 29–November 3, 2012, Levico Terme, Italy. The first section is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. ...

Added: July 21, 2013

Vladimir L. Popov, Transformation Groups 2014 Vol. 19 No. 2 P. 549–568

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: March 17, 2014

Cheltsov I., Zhang K., Rubinstein Y., / Cornell University. Series arXiv "math". 2018.

The purpose of this article is to develop techniques for estimating basis log canonical thresholds on logarithmic surfaces. To that end, we develop new local intersection estimates that imply log canonicity. Our main motivation and application is to show the existence of Kahler-Einstein edge metrics on all but finitely many families of asymptotically log del ...

Added: December 3, 2018

Vladimir L. Popov, Proceedings of the Steklov Institute of Mathematics 2016 Vol. 292 P. 209–223

For every algebraically closed field k of characteristic different from 2, we prove
the following: (1) Finite-dimensional (not necessarily associative) k-algebras of general type
of a fixed dimension, considered up to isomorphism, are parametrized by the values of a tuple
of algebraically independent (over k) rational functions of the structure constants. (2) There
exists an “algebraic normal form” to ...

Added: March 29, 2016