### ?

## Katzarkov-Kontsevich-Pantev Conjecture for Fano threefolds

Cornell University
,
2018.

Cheltsov I., Przyjalkowski V.

We verify Katzarkov-Kontsevich-Pantev conjecture for Landau-Ginzburg models of smooth Fano threefolds.

Publication based on the results of:

Galkin S., Belmans P., Mukhopadhyay S., / Cornell University. Series math "arxiv.org". 2020. No. 2009.05568.

We introduce graph potentials, which are Laurent polynomials associated to (colored) trivalent graphs. These graphs encode degenerations of curves to rational curves, and graph potentials encode degenerations of the moduli space of rank 2 bundles with fixed determinant. We show that the birational type of the graph potential only depends on the homotopy type of ...

Added: April 15, 2021

Katzarkov L. V., Abouzaid M., Auroux D., Publications Mathématiques de l'IHÉS 2016 Vol. 123 No. 1 P. 199-282

https://link.springer.com/article/10.1007/s10240-016-0081-9 ...

Added: October 23, 2017

Ionov A., / Cornell University. Series arXiv:1504.07930 "math.arxiv". 2015.

Cardy-Frobenius algebra is the algebraic structure on the space of states in open-closed topological field theory. We prove that every semisimple super Cardy-Frobenius algebras is the direct sum of the super Cardy-Frobenius algebras of three simple types. We also apply our results to singularity theory via Landau-Ginzburg models and matrix factorizations. ...

Added: November 8, 2016

Coates T., Corti A., Galkin S. et al., / Cornell University. Series math "arxiv.org". 2012. No. 1212.1722.

We consider mirror symmetry for Fano manifolds, and describe how one can recover the classification of 3-dimensional Fano manifolds from the study of their mirrors. We sketch a program to classify 4-dimensional Fano manifolds using these ideas. ...

Added: September 14, 2013

Katzarkov L. V., Gross M., Ruddat H., Advances in Mathematics 2017 Vol. 308 P. 208-275

The goal of this paper is to propose a theory of mirror symmetry for varieties of general type. Using Landau–Ginzburg mirrors as motivation, we describe the mirror of a hypersurface of general type (and more generally varieties of non-negative Kodaira dimension) as the critical locus of the zero fibre of a certain Landau–Ginzburg potential. The ...

Added: October 23, 2017

Cheltsov I., Przyjalkowski V., / Cornell University. Series arXiv "math". 2020.

We conjecture that the number of components of the fiber over infinity of Landau--Ginzburg model for a smooth Fano variety X equals the dimension of the anticanonical system of X. We verify this conjecture for log Calabi--Yau compactifications of toric Landau--Ginzburg models for smooth Fano threefolds, complete intersections, and some toric varieties. ...

Added: August 19, 2020

Ebeling W., Gusein-Zade S., International Mathematics Research Notices 2021 Vol. 2021 No. 16 P. 12305-12329

A.Takahashi suggested a conjectural method to find mirror symmetric pairs consisting of invertible polynomials and symmetry groups generated by some diagonal symmetries and some permutations of variables. Here we generalize the Saito duality between Burnside rings to a case of non-abelian groups and prove a "non-abelian" generalization of the statement about the equivariant Saito duality ...

Added: August 26, 2021

Ilten N. O., Lewis J., Victor Przyjalkowski, Journal of Algebra 2013 Vol. 374 P. 104-121

We show that every Picard rank one smooth Fano threefold has a weak Landau–Ginzburg model coming from a toric degeneration. The fibers of these Landau–Ginzburg models can be compactified to K3 surfaces with Picard lattice of rank 19. We also show that any smooth Fano variety of arbitrary dimension which is a complete intersection of ...

Added: July 2, 2013

Iliev A., Katzarkov L., Victor Przyjalkowski, Proceedings of the Edinburgh Mathematical Society 2014 Vol. 57 P. 145-173

This paper suggests a new approach to questions of rationality of threefolds based on category theory. Following M. Ballard, D. Favero, L. Katzarkov (ArXiv:1012.0864) and D. Favero, L. Katzarkov (Noether--Lefschetz Spectra and Algebraic cycles, in preparation) we enhance constructions from A. Kuznetsov (arXiv:0904.4330) by introducing Noether--Lefschetz spectra --- an interplay between Orlov spectra (C. Oliva, ...

Added: July 2, 2013

Coates T., Galkin S., Kasprzyk A. et al., Experimental Mathematics 2020 Vol. 29 No. 2 P. 183-221

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles. ...

Added: September 1, 2018

Buryak A., Moscow Mathematical Journal 2020 Vol. 20 No. 3 P. 475-493

By a famous result of K. Saito, the parameter space of the miniversal deformation of the $A_{r-1}$-singularity carries a Frobenius manifold structure. The Landau-Ginzburg mirror symmetry says that, in the flat coordinates, the potential of this Frobenius manifold is equal to the generating series of certain integrals over the moduli space of $r$-spin curves. In ...

Added: May 22, 2020

Gritsenko V., Никулин В. В., TRANSACTIONS OF THE MOSCOW MATHEMATICAL SOCIETY 2017 Т. 78 № 1 С. 89-100

Using our results about Lorentzian Kac--Moody algebras and arithmetic mirror symmetry, we give six series of examples of lattice-polarized K3 surfaces with automorphic discriminant. ...

Added: October 11, 2017

Cruz Morales J. A., Galkin S., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2013 Vol. 9 No. 005 P. 1-13

In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1–52]. ...

Added: May 27, 2013

Galkin S., Golyshev V., Iritani H., Duke Mathematical Journal 2016 Vol. 165 No. 11 P. 2005-2077

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: November 18, 2014

Coates T., Galkin S., Kasprzyk A. et al., / Cornell University. Series math "arxiv.org". 2014. No. 1406.4891.

We collect a list of known four-dimensional Fano manifolds and compute their quantum periods. This list includes all four-dimensional Fano manifolds of index greater than one, all four-dimensional toric Fano manifolds, all four-dimensional products of lower-dimensional Fano manifolds, and certain complete intersections in projective bundles. ...

Added: June 20, 2014

Barannikov S., Arnold Mathematical Journal 2019 Vol. 5 No. 1 P. 97-104

The EA-matrix integrals, introduced in Barannikov (Comptes Rendus Math 348:359–362, 2006), are studied in the case of graded associative algebras with odd or even scalar product. I prove that the EA-matrix integrals for associative algebras with scalar product are integrals of equivariantly closed differential forms with respect to the Lie algebra glN(A)glN(A). ...

Added: June 4, 2019

Akhtar M., Coates T., Galkin S. et al., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2012 Vol. 8 No. 094 P. 1-707

Given a Laurent polynomial f, one can form the period of f: this is a function of one complex variable that plays an important role in mirror symmetry for Fano manifolds. Mutations are a particular class of birational transformations acting on Laurent polynomials in two variables; they preserve the period and are closely connected with ...

Added: September 14, 2013

Galkin S., / Cornell University. Series math "arxiv.org". 2014. No. 1404.7388.

Consider a Laurent polynomial with real positive coefficients such that the origin is strictly inside its Newton polytope. Then it is strongly convex as a function of real positive argument. So it has a distinguished Morse critical point --- the unique critical point with real positive coordinates. As a consequence we obtain a positive answer ...

Added: May 4, 2014

Lunts V., Przyjalkowski V., Advances in Mathematics 2018 Vol. 329 P. 189-216

We consider the conjectures of Katzarkov, Kontsevich, and Pantev
about Landau--Ginzburg Hodge numbers associated to tamely compactifiable Landau--Ginzburg models. We test these conjectures
in case of dimension two, verifying some and giving a counterexample to the other. ...

Added: February 23, 2018

Gusein-Zade S., Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 2020 Vol. 16 No. 051 P. 1-15

P. Berglund, T. Hübsch, and M. Henningson proposed a method to construct mirror symmetric Calabi–Yau manifolds. They considered a pair consisting of an invertible polynomial and of a finite (abelian) group
of its diagonal symmetries together with a dual pair. A. Takahashi suggested a method to generalize this construction to symmetry groups generated by some diagonal ...

Added: October 27, 2020

Sawada T., Li Y., Pizlo Z., Symmetry 2011 Vol. 3 No. 2 P. 365-388

Added: September 23, 2014

Galkin S., Iritani H., / Cornell University. Series math "arxiv.org". 2015. No. 1508.00719.

The asymptotic behaviour of solutions to the quantum differential equation of a Fano manifold F defines a characteristic class A_F of F, called the principal asymptotic class. Gamma conjecture of Vasily Golyshev and the present authors claims that the principal asymptotic class A_F equals the Gamma class G_F associated to Euler's Γ-function. We illustrate in ...

Added: August 5, 2015

Galkin S., Rybakov S., / Cornell University. Series math "arxiv.org". 2019. No. 1910.14379.

For a family of K3 surfaces we implement a variation of a general construction of towers of algebraic curves over finite fields given in a previous paper. As a result we get a good tower over k=𝔽_{p^2}, that is optimal if p=3. ...

Added: November 6, 2019

Coates T., Corti A., Galkin S. et al., Geometry and Topology 2016 Vol. 20 No. 1 P. 103-256

The quantum period of a variety X is a generating function for certain Gromov-Witten invariants of X which plays an important role in mirror symmetry. In this paper we compute the quantum periods of all 3-dimensional Fano manifolds. In particular we show that 3-dimensional Fano manifolds with very ample anticanonical bundle have mirrors given by ...

Added: November 18, 2014