### Working paper

## Using modular decomposition technique to solve the maximum clique problem

The approaches based on applying of metamodeling and domain-specific languages are widely used in software engineering. There are many different tools for creating visual domain-specific modeling languages with a possibility of determining user’s graphical notations. However, these tools possess disadvantages. The article presents an approach to the development of language workbench that allows to eliminate some restrictions of existing DSM-platforms. The MetaLanguage system is designed for creation of visual dynamic adaptable domain-specific modeling languages and for models construction with these languages. It allows executing transformations of the created models in various textual and graphical notations. Basic metalanguage constructions of this system are described. The formal description of modeling languages metamodel used in MetaLanguage is given. The architecture of MetaLanguage toolkit is presented.

A simple measure of similarity for the construction of the market graph is proposed. The measure is based on the probability of the coincidence of the signs of the stock returns. This measure is robust, has a simple interpretation, is easy to calculate and can be used as measure of similarity between any number of random variables. For the case of pairwise similarity the connection of this measure with the sign correlation of Fechner is noted. The properties of the proposed measure of pairwise similarity in comparison with the classic Pearson correlation are studied. The simple measure of pairwise similarity is applied (in parallel with the classic correlation) for the study of Russian and Swedish market graphs. The new measure of similarity for more than two random variables is introduced and applied to the additional deeper analysis of Russian and Swedish markets. Some interesting phenomena for the cliques and independent sets of the obtained market graphs are observed.

1

In this paper we consider two branch and bound algorithms for the maximum clique problem which demonstrate the best performance on DIMACS instances among the existing methods. These algorithms are MCS algorithm by Tomita et al. (2010) and MAXSAT algorithm by Li and Quan (2010a, b). We suggest a general approach which allows us to speed up considerably these branch and bound algorithms on hard instances. The idea is to apply a powerful heuristic for obtaining an initial solution of high quality. This solution is then used to prune branches in the main branch and bound algorithm. For this purpose we apply ILS heuristic by Andrade et al. (2012). The best results are obtained for *p_hat1000-3* instance and *gen* instances with up to 11,000 times speedup.

In this chapter, we present our enhancements of one of the most efficient exact algorithms for the maximum clique problem—MCS algorithm by Tomita, Sutani, Higashi, Takahashi and Wakatsuki (in Proceedings of WALCOM’10, 2010, pp. 191–203). Our enhancements include: applying ILS heuristic by Andrade, Resende and Werneck (in Heuristics 18:525–547, 2012) to find a high-quality initial solution, fast detection of clique vertices in a set of candidates, better initial coloring, and avoiding dynamic memory allocation. A good initial solution considerably reduces the search tree size due to early pruning of branches related to small cliques. Fast detecting of clique vertices is based on coloring. Whenever a set of candidates contains a vertex adjacent to all candidates, we detect it immediately by its color and add it to the current clique avoiding unnecessary branching. Though dynamic memory allocation allows to minimize memory consumption of the program, it increases the total running time. Our computational experiments show that for dense graphs with a moderate number of vertices (like the majority of DIMACS graphs) it is more efficient to store vertices of a set of candidates and their colors on stack rather than in dynamic memory on all levels of recursion. Our algorithm solves p_hat1000-3 benchmark instance which cannot be solved by the original MCS algorithm. We got speedups of 7, 3000, and 13000 times for gen400_p0.9_55, gen400_p0.9_65, and gen400_p0.9_75 instances, correspondingly.

Many efficient exact branch and bound maximum clique solvers use approximate coloring to compute an upper bound on the clique number for every subproblem. This technique reasonably promises tight bounds on average, but never tighter than the chromatic number of the graph.

Li and Quan, 2010, AAAI Conference, p. 128–133 describe a way to compute even tighter bounds by reducing each colored subproblem to maximum satisfiability problem (MaxSAT). Moreover they show empirically that the new bounds obtained may be lower than the chromatic number.

Based on this idea this paper shows an efficient way to compute related “infra-chromatic” upper bounds without an explicit MaxSAT encoding. The reported results show some of the best times for a stand-alone computer over a number of instances from standard benchmarks.

In this article we use the modular decomposition technique for exact solving the weighted maximum clique problem. Our algorithm takes the modular decomposition tree from the paper of Tedder et. al. and finds solution recursively. Also, we propose algorithms to construct graphs with modules. We show some interesting results, comparing our solution with Ostergards algorithm on DIMACS benchmarks and on generated graphs.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.

Existing approaches suggest that IT strategy should be a reflection of business strategy. However, actually organisations do not often follow business strategy even if it is formally declared. In these conditions, IT strategy can be viewed not as a plan, but as an organisational shared view on the role of information systems. This approach generally reflects only a top-down perspective of IT strategy. So, it can be supplemented by a strategic behaviour pattern (i.e., more or less standard response to a changes that is formed as result of previous experience) to implement bottom-up approach. Two components that can help to establish effective reaction regarding new initiatives in IT are proposed here: model of IT-related decision making, and efficiency measurement metric to estimate maturity of business processes and appropriate IT. Usage of proposed tools is demonstrated in practical cases.