• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Working paper

Rigid hyperholomorphic sheaves remain rigid along twistor deformations of the underlying hyparkahler manifold

Verbitsky M., Markman E., Mehrotra S.
Let S be a K3 surface and M a smooth and projective 2n-dimensional moduli space of stable coherent sheaves on S. Over M x M there exists a rank 2n-2 reflexive hyperholomorphic sheaf E_M, whose fiber over a non-diagonal point (F,G) is Ext^1(F,G). The sheaf E_M can be deformed along some twistor path to a sheaf E_X over the cartesian square of every Kahler manifold X deformation equivalent to M. We prove that E_X is infinitesimally rigid, and the isomorphism class of the Azumaya algebra End(E_X) is independent of the twistor path chosen. This verifies conjectures in arXiv:1310.5782 and arXiv:1507.03108 on non-commutative deformations of K3 surfaces and renders the results of these two papers unconditional.