### Working paper

## Slices of Parameter Space of Cubic Polynomials

Polynomials from the closure of the principal hyperbolic domain of the cubic connectedness locus have some specific properties, which were studied in a recent paper by the authors. The family of (affine conjugacy classes of) all polynomials with these properties is called the Main Cubioid. In this paper, we describe a combinatorial counterpart of the Main Cubioid --- the set of invariant laminations that can be associated to polynomials from the Main Cubioid.

Through the use of methods of synergetics - an interdisciplinary approach in modern science that investigates common features of complex systems of various origins - the monograph analyzes complex phenomena in economics. The author shows that modern economies are characterized by multiple synergetic features, with studies of economic time series providing the grounds for assuming an important role of synergetic effects in actual trajectories of economic development. Significant attention is dedicated in the book to uncovering the basic principles of a synergetic approach to modern economics, and to the demonstration of the key concepts of synergetics, as applied to economics.

The monograph has been written for an economic readership in the first place, although experts from other fields of knowledge can also find it interesting. Some of the hypotheses and conclusions suggested in the book can also pose interest for government officials.

Through the use of methods of synergetics - an interdisciplinary approach in modern science that investigates common features of complex systems of various origins - the monograph analyzes complex phenomena in economics. The author shows that modern economies are characterized by multiple synergetic features, with studies of economic time series providing the grounds for assuming an important role of synergetic effects in actual trajectories of economic development. Significant attention is dedicated in the book to uncovering the basic principles of a synergetic approach to modern economics, and to the demonstration of the key concepts of synergetics, as applied to economics.

The monograph has been written for an economic readership in the first place, although experts from other fields of knowledge can also find it interesting. Some of the hypotheses and conclusions suggested in the book can also pose interest for government officials.

We interpret the combinatorial Mandelbrot set in terms of \it{quadratic laminations} (equivalence relations ∼ on the unit circle invariant under σ2). To each lamination we associate a particular {\em geolamination} (the collection ∼ of points of the circle and edges of convex hulls of ∼-equivalence classes) so that the closure of the set of all of them is a compact metric space with the Hausdorff metric. Two such geolaminations are said to be {\em minor equivalent} if their {\em minors} (images of their longest chords) intersect. We show that the corresponding quotient space of this topological space is homeomorphic to the boundary of the combinatorial Mandelbrot set. To each equivalence class of these geolaminations we associate a unique lamination and its topological polynomial so that this interpretation can be viewed as a way to endow the space of all quadratic topological polynomials with a suitable topology.

W. Thurston constructed a combinatorial model of the Mandelbrot set M2M2such that there is a continuous and monotone projection of M2M2to this model. We propose the following related model for the space MD3MD3of critically marked cubic polynomials with connected Julia set and all cycles repelling. If (P,c1,c2)∈MD3(P,c1,c2)∈MD3, then every point *z* in the Julia set of the polynomial *P * defines a unique maximal finite set AzAzof angles on the circle corresponding to the rays, whose impressions form a continuum containing *z *. Let G(z)G(z)denote the convex hull of AzAz. The convex sets G(z)G(z)partition the closed unit disk. For (P,c1,c2)∈MD3(P,c1,c2)∈MD3let <img height="16" border="0" style="vertical-align:bottom" width="14" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S1631073X1730119X-si6.gif">c1⁎be the *co-critical point of *c1c1. We tag the marked dendritic polynomial (P,c1,c2)(P,c1,c2)with the set <img height="18" border="0" style="vertical-align:bottom" width="159" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S1631073X1730119X-si14.gif">G(c1⁎)×G(P(c2))⊂D‾×D‾. Tags are pairwise disjoint; denote by <img height="18" border="0" style="vertical-align:bottom" width="57" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S1631073X1730119X-si10.gif">MD3combtheir collection, equipped with the quotient topology. We show that tagging defines a continuous map from MD3MD3to <img height="18" border="0" style="vertical-align:bottom" width="57" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S1631073X1730119X-si10.gif">MD3combso that <img height="18" border="0" style="vertical-align:bottom" width="57" alt="View the MathML source" title="View the MathML source" src="http://origin-ars.els-cdn.com/content/image/1-s2.0-S1631073X1730119X-si10.gif">MD3combserves as a model for MD3MD3.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.