### Working paper

## A genetic algorithm for autonomous navigation in partially observable domain

*Full text (PDF, 366 Kb)*

The paper deals with the problems of creating and tuning a system of automated anaphora resolution for Russian. Such a system is introduced, combining rule-based and machine learning approaches. It shows F-measure from 0.51 to 0.59. Freeling serves as an underlying morphological layer and an account of its quality is given, with its influence on anaphora resolution workflow. The anaphora resolution system itself is available to download and use, coming with online demo.

The volume contains the abstracts of the 12th International Conference "Intelligent Data Processing: Theory and Applications". The conference is organized by the Russian Academy of Sciences, the Federal Research Center "Informatics and Control" of the Russian Academy of Sciences and the Scientific and Coordination Center "Digital Methods of Data Mining". The conference has being held biennially since 1989. It is one of the most recognizable scientific forums on data mining, machine learning, pattern recognition, image analysis, signal processing, and discrete analysis. The Organizing Committee of IDP-2018 is grateful to Forecsys Co. and CFRS Co. for providing assistance in the conference preparation and execution. The conference is funded by RFBR, grant 18-07-20075. The conference website http://mmro.ru/en/.

This research work deals with the problem formulation of control of complex organizational structures. The mechanism of functioning of such systems is described by example of a vertically integrated company (VIC). The problems of strategic and operative control of VIC are considered. The methods for solving such problems based on genetic algorithms and neural networks are suggested. A new iterative procedure for coordination of strategic and operative control goals based on the estimation of imbalance between shareholder value and net profit distributed for payment of dividends to shareholders is suggested.

The considered system is a double criterion optimization problem with complex multiparameter restrictions.

In an effort to make reading more accessible, an automated readability formula can help students to retrieve appropriate material for their language level. This study attempts to discover and analyze a set of possible features that can be used for single-sentence readability prediction in Russian. We test the influence of syntactic features on predictability of structural complexity. The readability of sentences from SynTagRus corpus was marked up manually and used for evaluation.

*Abstract*— In this paper a new multi-agent genetic algorithm for multi-objective optimization (MAGAMO) is presented. The algorithm based on the dynamical interaction of synchronized agents which are interdepended genetic algorithms (GAs) having own separate evolutions of their populations. This approach has some similarities with well known “island model” of GA. In both methods is used a migration of individuals from agents (“islands”) to the main process (“continent”). In contrast, the intelligent agents in MAGAMO are able to decompose the dimensions space to form evolutions of subpopulations (instead of distribution of initial population as in the standard “island model”). In the same time, the main (central) process is responsible for the coordination of agents only and their selection according Pareto rules (without evolution). Intelligent agents seek local suboptimal solutions for a global optimization, which will be completed in the result of the interaction of all agents. In the result of this, the amount of needed recalculating the fitness-functions can be significantly reduced. It is especially important for the multi-objective optimization related to a large-scale problem. Besides, the proposed approximating approach allows solving complex optimization problems for real big systems (like an oil company, plants, corporations, etc.).

In work the developed model of adaptive management by the vertically integrated companies based on the system approach supporting the mechanism of an operational management in a uniform cycle of strategic planning, within the limits of faster time is presented. Thus for a finding of optimum values of operating parameters special algorithms of a class of genetic algorithms are used, neural networks the example of the developed system of adaptive management for the vertically-integrated oil company is etc. presented.

This paper is an overview of the current issues and tendencies in Computational linguistics. The overview is based on the materials of the conference on computational linguistics COLING’2012. The modern approaches to the traditional NLP domains such as pos-tagging, syntactic parsing, machine translation are discussed. The highlights of automated information extraction, such as fact extraction, opinion mining are also in focus. The main tendency of modern technologies in Computational linguistics is to accumulate the higher level of linguistic analysis (discourse analysis, cognitive modeling) in the models and to combine machine learning technologies with the algorithmic methods on the basis of deep expert linguistic knowledge.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are *selfreducible*? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.