### ?

## Basic automorphism groups of complete Cartan foliations covered by fibrations

Cornell University
,
2015.
No. 1410.1144.

We get sufficient conditions for the full basic automorphism group of a complete Cartan foliation to admit a unique (finite-dimensional) Lie group structure in the category of Cartan foliations. In particular, we obtain sufficient conditions for this group to be discrete. Emphasize that the transverse Cartan geometry may be noneffective. Some estimates of the dimension of this group depending on the transverse geometry are found. Further, we investigate Cartan foliations covered by fibrations and ascertain their specification. Examples of computing the full basic automorphism group of complete Cartan foliations are constructed.

Publication based on the results of:

K. I. Sheina, N. I. Zhukova, Lobachevskii Journal of Mathematics 2018 Vol. 39 No. 2 P. 271-280

For a complete Cartan foliation (M; F) we introduce
two algebraic invariants g0(M; F) and g1(M; F) which we call structure
Lie algebras. If the transverse Cartan geometry of (M; F) is eective
then g0(M; F) = g1(M; F). We prove that if g0(M; F) is zero then in
the category of Cartan foliations the group of all basic ...

Added: March 23, 2017

Zhukova N.I., K. I. Sheina, / Cornell University. Series math "arxiv.org". 2015. No. 1410.1144.

We get sufficient conditions for the full basic automorphism group of a complete
Cartan foliation to admit a unique (finite-dimensional) Lie group structure in the category
of Cartan foliations. In particular, we obtain sufficient conditions for this group
to be discrete. Emphasize that the transverse Cartan geometry may be noneffective.
Some estimates of the dimension of this group depending ...

Added: November 10, 2014

Sheina K., Zhukova N., Lobachevskii Journal of Mathematics 2016

For a complete Cartan foliation $(M,F)$ we introduce two algebraic invariants $\frak{g}_{0}(M,F)$ and
${\frak g}_{1}(M,F)$ which we
call structure Lie
algebras. If the transverse Cartan geometry of $(M,F)$ is effective then
$\frak{g}_{0}(M,F)={\frak g}_{1}(M,F)$. We prove that if $\frak{g}_{0}(M,F)$
is zero then in the category of Cartan foliations the group of all basic automorphisms of the ...

Added: October 12, 2016

Sheina K., / Cornell University. Series arXiv "math". 2020. No. 04348v1.

The basic automorphism group of a Cartan foliation (M, F) is the quotient group of the automorphism group of (M, F) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism groups. Estimates ...

Added: December 9, 2020

Группы базовых автоморфизмов картановых слоений моделируемых на неэффективных картановых геометриях.

Zhukova N., Sheina K., Труды Математического центра им. Н.И. Лобачевского 2015 Т. 52 С. 73-74

Исследуются картановы слоения, то есть слоения допускающие трансверсальную картанову геометрию. Рассматривается общая ситуация, когда картанова геометрия может быть неэффективной. Найдено достаточное условие для того, чтобы полная группа базовых автоморфизмов картанова слоения со связностью Эресмана допускала единственную структуру конечномерной группы Ли в категории картановых слоений, где изоморфизмы сохраняют как слоение, так и трансверсальную геометрию. Получены некоторые ...

Added: October 14, 2015

Н.И. Жукова, Шеина К. И., Труды Математического центра им. Н.И. Лобачевского 2014 Т. 50 С. 74-76

We investigate Cartan foliations covered by fibrations. We obtain a sufficient condition for the full
basic automorphism group of a complete Cartan foliation covered by fibration to admit a
unique (finite-dimensional) Lie group structure in the category of
Cartan foliations. The explicit new formula for determining its basic automorphism
Lie group is given. Examples of computing the full basic ...

Added: November 12, 2014

Nina I. Zhukova, Anna Yu. Dolgonosova .., Central European Journal of Mathematics 2013 Vol. 11 No. 12 P. 2076-2088

The category of foliations is considered. In this category
morphisms are differentiable mappings transforming leaves of one
foliation into leaves of the other foliation.
We proved that the automorphism group of the foliations
admitting a transverse linear connection is an infinite-dimensional
Lie group modeled on $LF$-spaces. This result extends the corresponding
result of Macias-Virgos and Sanmartin for Riemannian foliations.
In particular, our ...

Added: September 28, 2014

Sheina K., Известия высших учебных заведений. Поволжский регион. Физико-математические науки 2021 Т. 1 № 1 С. 49-65

The basic automorphism group of a Cartan foliation (M,F) is the quotient group of the automorphism group of (M, F ) by the normal subgroup, which preserves every leaf invariant. For Cartan foliations covered by fibrations, we find sufficient conditions for the existence of a structure of a finite-dimensional Lie group in their basic automorphism ...

Added: December 16, 2020

Shramov K., Prokhorov Y., / Cornell University. Series arXiv "math". 2019.

We classify compact complex surfaces whose groups of bimeromorphic selfmaps have bounded finite subgroups. We also prove that the stabilizer of a point in the automorphism group of a compact complex surface of zero Kodaira dimension, as well as the stabilizer of a point in the automorphism group of an arbitrary compact Kaehler manifold of ...

Added: November 19, 2019

Vladimir L. Popov, Transformation Groups 2014 Vol. 19 No. 2 P. 549-568

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: March 17, 2014

Dolgonosova A., Zhukova N., Журнал Средневолжского математического общества 2015 Т. 17 № 4 С. 14-23

We prove the equivalence of three different approaches to the definition of completeness of a foliation with transverse linear connection. It is shown that for the transverse ane foliations
(M, F) of codimension q, q > 1, each of the mentioned above conditions are equivalent to
fulllment of the following two conditions: 1) there exists an Ehresmann ...

Added: March 12, 2016

Popov V. L., Zarhin Y., / Cornell University. Series math "arxiv.org". 2018. No. 1808.01136.

We classify the types of root systems $R$ in the rings of integers of number fields $K$ such that the Weyl group $W(R)$ lies in the group $\mathcal L(K)$ generated by ${\rm Aut} (K)$ and multipli\-ca\-tions by the elements of $K^*$. We also classify the Weyl groups of roots systems of rank $n$ which are ...

Added: August 8, 2018

Tokyo : American Mathematical Society, World Scientific, 2017

Preface
The workshop “Algebraic Varieties and Automorphism Groups” was held at the Research Institute of Mathematical Sciences (RIMS), Kyoto University during July 7-11, 2014. There were over eighty participants including twenty people from overseas Canada, France, Germany, India, Korea, Poland, Russia, Singapore, Switzerland, and USA.
Recently, there have been remarkable developments in algebraic geometry and related fields, ...

Added: July 12, 2017

Zhukova N., Moscow Mathematical Journal 2018

We introduce a category of rigid geometries on singular spaces which
are leaf spaces of foliations and are considered as leaf manifolds. We
single out a special category F_0 of leaf manifolds containing the orbifold
category as a full subcategory. Objects of F_0 may have non-Hausdorff
topology unlike the orbifolds. The topology of some objects of F_0 does
not satisfy ...

Added: April 2, 2018

V. L. Popov, Mathematical notes 2018 Vol. 103 No. 5 P. 811-819

We prove that the family of all connected n-dimensional real Lie groups is uniformly Jordan for every n. This
implies that all algebraic (not necessarily affine) groups over fields of characteristic zero and some
transformation groups of complex spaces and Riemannian manifolds are Jordan. ...

Added: April 13, 2018

Avilov A., Математические заметки 2020 Т. 107 № 1 С. 3-10

The forms of the Segre cubic over non-algebraically closed fields, their automorphisms groups, and equivariant birational rigidity are studied. In particular, it is shown that all forms of the Segre cubic over any field have a point and are cubic hypersurfaces. ...

Added: May 11, 2020

Nikolay Konovalov, / Cornell University. Series "Working papers by Cornell University". 2022. No. 2202.07507.

Let $V_{n,d}$ be the variety of equations for hypersurfaces of degree $d$ in $\mathbb{P}^n(\mathbb{C})$ with singularities not worse than simple nodes. We prove that the orbit map $G'=SL_{n+1}(\mathbb{C}) \to V_{n,d}$, $g\mapsto g\cdot s_0$, $s_0\in V_{n,d}$ is surjective on the rational cohomology if $n>1$, $d\geq 3$, and $(n,d)\neq (2,3)$. As a result, the Leray-Serre spectral sequence ...

Added: September 12, 2022

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2014. No. 1401.0278.

We explore orbits, rational invariant functions, and quotients of the natural actions of connected, not necessarily finite dimensional subgroups of the automorphism groups of irreducible algebraic varieties. The applications of the results obtained are given. ...

Added: January 3, 2014

Kuyumzhiyan K., Proceedings of the American Mathematical Society 2020 No. 148 P. 3723-3731

We prove the conjecture of Berest-Eshmatov-Eshmatov by showing that the group of automorphisms of a product of Calogero-Moser spaces C_n_i, where the n_i are pairwise distinct, acts m-transitively for each m. ...

Added: August 18, 2020

Avilov A., Sbornik Mathematics 2016 Vol. 307 No. 3 P. 315-330

We prove that any G-del Pezzo threefold of degree 4, except for a one-parameter family and four distinguished cases, can be equivariantly reconstructed to the projective space ℙ3, a quadric Q ⊂ ℙ4 , a G-conic bundle or a del Pezzo fibration. We also show that one of these four distinguished varieties is birationally rigid ...

Added: July 6, 2016

Kharchev S. M., Khoroshkin S. M., Advances in Mathematics 2020 Vol. 375 No. 107368 P. 1-56

We obtain certain Mellin-Barnes integrals which present Whittaker wave functions related to classical real split forms of simple complex Lie groups ...

Added: October 18, 2020

Prokhorov Y., Shramov K., / Cornell University. Series arXiv "math". 2018.

We prove that automorphism groups of Inoue and primary Kodaira surfaces are Jordan. ...

Added: June 8, 2019

Shirokov D., Advances in Applied Clifford Algebras 2010 Vol. 20 No. 2 P. 411-425

In this paper we present new formulas, which represent commutators and anticommutators of Clifford algebra elements as sums of elements of different ranks. Using these formulas we consider subalgebras of Lie algebras of pseudo-unitary groups. Our main techniques are Clifford algebras. We have found 12 types of subalgebras of Lie algebras of pseudo-unitary groups. ...

Added: June 16, 2015

Zhukova N., Sheina K., Журнал Средневолжского математического общества 2016 Т. 18 № 2 С. 30-40

We find necessary and sufficient conditions for a foliation of codimension $q$ on $n$-dimensional manifold with transverse linear connection to admit a transverse invariant pseudo-Riemannian metric of a given signature which is parallel with the respect to the indicated connection. In particular, we obtain a criterion for a foliation with transverse linear connection to be ...

Added: June 7, 2016