### ?

## k-symplectic structures and absolutely trianalytic subvarieties in hyperkahler manifolds

Andrey Soldatenkov, Misha Verbitsky

Let $(M,I,J,K)$ be a hyperkahler manifold, and $Z\subset (M,I)$ a complex subvariety in $(M,I)$. We say that $Z$ is trianalytic if it is complex analytic with respect to $J$ and $K$, and absolutely trianalytic if it is trianalytic with respect to any hyperk\"ahler triple of complex structures $(M,I,J',K')$ containing $I$. For a generic complex structure $I$ on $M$, all complex subvarieties of $(M,I)$ are absolutely trianalytic. It is known that a normalization $Z'$ of a trianalytic subvariety is smooth; we prove that $b_2(Z')$ is no smaller than $b_2(M)$ when $M$ has maximal holonomy (that is, $M$ is IHS). To study absolutely trianalytic subvarieties further, we define a new geometric structure, called k-symplectic structure; this structure is a generalization of the hypersymplectic structure. A k-symplectic structure on a 2d-dimensional manifold $X$ is a k-dimensional space $R$ of closed 2-forms on $X$ which all have rank 2d or d. It is called non-degenerate if the set of all degenerate forms in $R$ is a smooth, non-degenerate quadric hypersurface in $R$. We consider absolutely trianalytic tori in a hyperkahler manifold $M$ of maximal holonomy. We prove that any such torus is equipped with a non-degenerate k-symplectic structure, where $k=b_2(M)$. We show that the tangent bundle $TX$ of a k-symplectic manifold is a Clifford module over a Clifford algebra $Cl(k-1)$. Then an absolutely trianalytic torus in a hyperkahler manifold $M$ with $b_2(M)\geq 2r+1$ is at least $2^{r-1}$-dimensional.

Entov M., Verbitsky M., Full symplectic packing for tori and hyperkahler manifolds / Cornell University. Series math "arxiv.org". 2014.

Let M be a closed symplectic manifold of volume V. We say that M admits a full symplectic packing by balls if any collection of symplectic balls of total volume less than V admits a symplectic embedding to M. In 1994 McDuff and Polterovich proved that symplectic packings of Kahler manifolds can be characterized in ...

Added: February 5, 2015

Kurnosov N., The second Betti number of hyperkähler manifolds / Cornell University. Series math "arxiv.org". 2014.

Let M be a compact irreducible hyperkahler manifold, from Bogomolov inequality [V1] we obtain forbidden values of the second Betti number b_2 in arbitrary dimension. ...

Added: February 21, 2014

Ekaterina Amerik, Misha Verbitsky, Morrison-Kawamata cone conjecture for hyperkahler manifolds / Cornell University. Series math "arxiv.org". 2014.

Let $M$ be a simple holomorphically symplectic manifold, that is, a simply connected holomorphically symplectic manifold of Kahler type with $h^{2,0}=1$. We prove that the group of holomorphic automorphisms of $M$ acts on the set of faces of its Kahler cone with finitely many orbits. This is a version of the Morrison-Kawamata cone conjecture for ...

Added: September 5, 2014

Verbitsky M., Ergodic complex structures on hyperkahler manifolds / Cornell University. Series math "arxiv.org". 2013.

Let M be a compact complex manifold. The corresponding Teichmuller space $\Teich$ is a space of all complex structures on M up to the action of the group of isotopies. The group Γ of connected components of the diffeomorphism group (known as the mapping class group) acts on $\Teich$ in a natural way. An ergodic ...

Added: December 27, 2013

Ivan Cheltsov, Martinez-Garcia J., Dynamic alpha-invariants of del Pezzo surfaces / Cornell University. Series math "arxiv.org". 2014.

For every smooth del Pezzo surface $S$, smooth curve $C\in|-K_{S}|$ and $\beta\in(0,1]$, we compute the $\alpha$-invariant of Tian $\alpha(S,(1-\beta)C)$ and prove the existence of K\"ahler--Einstein metrics on $S$ with edge singularities along $C$ of angle $2\pi\beta$ for $\beta$ in certain interval. In particular we give lower bounds for the invariant $R(S,C)$, introduced by Donaldson as ...

Added: February 5, 2015

Verbitsky M., Grantcharov G., Lejmi M., Existence of HKT metrics on hypercomplex manifolds of real dimension 8 / Cornell University. Series math "arxiv.org". 2014.

A hypercomplex manifold M is a manifold equipped with three complex structures satisfying quaternionic relations. Such a manifold admits a canonical torsion-free connection preserving the quaternion action, called Obata connection. A quaternionic Hermitian metric is a Riemannian metric on which is invariant with respect to unitary quaternions. Such a metric is called HKT if it ...

Added: September 19, 2014

Kamenova L., Lu S., Verbitsky M., Kobayashi pseudometric on hyperkahler manifolds / Cornell University. Series math "arxiv.org". 2013.

The Kobayashi pseudometric on a complex manifold $M$ is the maximal pseudometric such that any holomorphic map from the Poincare disk to $M$ is distance-decreasing. Kobayashi has conjectured that this pseudometric vanishes on Calabi-Yau manifolds. Using ergodicity of complex structures, we prove this result for any hyperkaehler manifold if it admits a deformation with a ...

Added: August 28, 2013

Kurnosov N., Absolutely trianalytic tori in the generalized Kummer variety / Cornell University. Series math "arxiv.org". 2015.

We prove that a generic complex deformation of a generalized Kummer variety contains no complex analytic tori. ...

Added: October 16, 2015

Ivan Cheltsov, Rubinstein Y., Asymptotically log Fano varieties / Cornell University. Series math "arxiv.org". 2013.

Motivated by the study of Fano type varieties we define a new class of log pairs that we call asymptotically log Fano varieties and strongly asymptotically log Fano varieties. We study their properties in dimension two under an additional assumption of log smoothness, and give a complete classification of two dimensional strongly asymptotically log smooth ...

Added: December 27, 2013

Mayanskiy E., Poisson cohomology of two Fano threefolds / Cornell University. Series math "arxiv.org". 2013.

We study the variety of Poisson structures and compute Poisson cohomology for two families of Fano threefolds - smooth cubic threefolds and the del Pezzo quintic threefold. Along the way we reobtain by a different method earlier results of Loray, Pereira and Touzet in the special case we are considering. ...

Added: December 27, 2013

Verbitsky M., Degenerate twistor spaces for hyperkahler manifolds / Cornell University. Series math "arxiv.org". 2013.

Let M be a hyperkaehler manifold, and η a closed, positive (1,1)-form which is degenerate everywhere on M. We associate to η a family of complex structures on M, called a degenerate twistor family, and parametrized by a complex line. When η is a pullback of a Kaehler form under a Lagrangian fibration L, all ...

Added: December 27, 2013

Galkin S., Shinder E., Exceptional collections of line bundles on the Beauville surface / Cornell University. Series math "arxiv.org". 2012. No. 1210.3339.

We construct quasi-phantom admissible subcategories in the derived category of coherent sheaves on the Beauville surface S. These quasi-phantoms subcategories appear as right orthogonals to subcategories generated by exceptional collections of maximal possible length 4 on S. We prove that there are exactly 6 exceptional collections consisting of line bundles (up to a twist) and these collections ...

Added: September 14, 2013

Kharlamov V., Viktor Kulikov, On numerically pluricanonical cyclic coverings / Cornell University. Series math "arxiv.org". 2013.

In this article, we investigate some properties of cyclic coverings of complex surfaces of general type branched along smooth curves that are numerically equivalent to a multiple of the canonical class. The main results concern coverings of surfaces of general type with p_g=0 and Miyaoka--Yau surfaces; in particular, they provide new examples of multicomponent moduli ...

Added: December 27, 2013

Lev Soukhanov, On the phenomena of constant curvature in the diffusion-orthogonal polynomials / Cornell University. Series math "arxiv.org". 2014.

We consider the systems of diffusion-orthogonal polynomials, defined in the
work [1] of D. Bakry, S. Orevkov and M. Zani and (particularly) explain why
these systems with boundary of maximal possible degree should always come from
the group, generated by reflections. Our proof works for the dimensions $2$ (on
which this phenomena was discovered) and $3$, and fails in ...

Added: September 19, 2014

Lee K., Shabalin T., Exceptional collections on some fake quadrics / Cornell University. Series math "arxiv.org". 2014.

We construct exceptional collections of maximal length on four families of
surfaces of general type with $p_g=q=0$ which are isogenous to a product of
curves. From these constructions we obtain new examples of quasiphantom
categories as their orthogonal complements. ...

Added: October 17, 2014

Positselski L., Contraherent cosheaves / Cornell University. Series math "arxiv.org". 2014. No. 1209.2995.

Contraherent cosheaves are globalizations of cotorsion (or similar) modules over commutative rings obtained by gluing together over a scheme. The category of contraherent cosheaves over a scheme is a Quillen exact category with exact functors of infinite product. Over a quasi-compact semi-separated scheme or a Noetherian scheme of finite Krull dimension (in a different version ...

Added: February 6, 2013

Efimov A., Homotopy finiteness of some DG categories from algebraic geometry / Cornell University. Series math "arxiv.org". 2013.

In this paper, we show that bounded derived categories of coherent sheaves (considered as DG categories) on separated schemes of finite type over a field of characteristic zero are homotopically finitely presented. This confirms a conjecture of Kontsevich. The proof uses categorical resolution of singularities of Kuznetsov and Lunts, which is based on the ordinary ...

Added: October 31, 2013

F. A. Bogomolov, Vik. S. Kulikov, European Journal of Mathematics 2015 Vol. 1 No. 4 P. 260-278

In \cite{Ku0}, the ambiguity index $a_{(G,O)}$ was introduced for each equipped finite group $(G,O)$. It is equal to the number of connected components of a Hurwitz space parametrizing coverings of a projective line with Galois group $G$ assuming that all local monodromies belong to conjugacy classes $O$ in $G$ and the number of branch points ...

Added: November 21, 2014

Rybakov S., On classification of groups of points on abelian varieties over finite fields / Cornell University. Series math "arxiv.org". 2014.

A k-isogeny class of abelian varieties over a finite field k is uniquely determined by the Weil polynomial f of any variety from this class. When we consider classification problems concerning abelian varieties inside an isogeny class, the classification can be given in terms of the corresponding Weil polynomial. In this paper we improve our ...

Added: January 21, 2014

A. Levin, Olshanetsky M., Zotov A., Classification of Isomonodromy Problems on Elliptic Curves / Cornell University. Series math "arxiv.org". 2013.

We consider the isomonodromy problems for flat $G$-bundles over punctured
elliptic curves $\Sigma_\tau$ with regular singularities of connections at
marked points. The bundles are classified by their characteristic classes.
These classes are elements of the second cohomology group
$H^2(\Sigma_\tau,{\mathcal Z}(G))$, where ${\mathcal Z}(G)$ is the center of
$G$. For any complex simple Lie group $G$ and arbitrary class we define ...

Added: December 27, 2013

Victor Kulikov, Shustin E., Duality of planar and spacial curves: new insight / Cornell University. Series math "arxiv.org". 2014.

We study the geometry of equiclassical strata of the discriminant in the space of plane curves of a given degree, which are families of curves of given degree, genus and class (degree of the dual curve). Our main observation is that the use of duality transformation leads to a series of new sufficient conditions for ...

Added: February 2, 2015

Bezrukavnikov R., Finkelberg M. V., Wreath Macdonald polynomials and categorical McKay correspondence (with Appendices by Ivan Losev, Vadim Vologodsky) / Cornell University. Series math "arxiv.org". 2012. No. 1208.3696.

Mark Haiman has reduced Macdonald positivity conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjectures where the symmetric group is replaced by the wreath product $S_n\ltimes (Z/r Z)^n$. He has proven the original conjecture by establishing the geometric statement about the Hilbert ...

Added: February 6, 2013

Fedor Bogomolov, Yuri Prokhorov, On stable conjugacy of finite subgroups of the plane Cremona group, I / Cornell University. Series math "arxiv.org". 2013.

We discuss the problem of stable conjugacy of finite subgroups of Cremona
groups. We show that the group $H^1(G,Pic(X))$ is a stable birational invariant
and compute this group in some cases. ...

Added: November 21, 2014

Fedor Bogomolov, De Oliveira B., Local structure of closed symmetric 2-differentials / Cornell University. Series math "arxiv.org". 2014.

In the authors's previous work on symmetric differentials and their
connection to the topological properties of the ambient manifold, a class of
symmetric differentials was introduced: closed symmetric differentials
([BoDeO11] and [BoDeO13]). In this article we give a description of the local
structure of closed symmetric 2-differentials on complex surfaces, with an
emphasis towards the local decompositions as products of ...

Added: November 21, 2014