Book chapter
Chapter 7. Elliptic and Periodic Asymptotic Forms of Solutions to P5
We apply methods from Space Power Geometry to the fifth Painlevé equation. Near infinity we obtained 2 families of elliptic asymptotic forms and 4 families of periodic asymptotic forms of its solutions. All of these families are 2-parameter.
In this work, the methods of power geometry are used to find asymptotic expansions of solutions to the fifth Painlevй equation as x 0 for all values of its four complex parameters. We obtain 30 families of expansions, of which 22 are obtained from published expansions of solutions to the sixth Painlevй equation. Among the other eight families, one was previously known and two can be obtained from the expansions of solutions to the third Painlevй equation. Three families of half-exotic expansions and two families of complicated expansions are new.
Applying methods of plane Power Geometry we are looking for the asymptotic expansions of solutions to the fifth Painleve ́ equation in the neighbourhood of its singular and nonsingular points.
This paper is a continuation of our previous paper where the Painlevé-Calogero correspondence has been extended to auxiliary linear problems associated with Painlevé equations. We have proved, for the first five equations from the Painlevé list, that one of the linear problems can be recast in the form of the non-stationary Schrödinger equation whose Hamiltonian is a natural quantization of the classical Calogero-like Hamiltonian for the corresponding Painlevé equation. In the present paper we establish the quantum Painlevé-Calogero correspondence for the most general case, the Painlevé VI equation. We also show how the desired special gauge and the needed choice of variables can be derived starting from the corresponding Schlesinger system with rational spectral parameter.
By means of Power Geometry we obtained all asymptotic expansions of solutions to the equation P5 of the following five types: power, power-logarithmic, complicated, exotic and half-exotic for all values of 4 complex parameters of the equation. They form 16 and 30 families in the neighbourhood of singular points z = infty and z = 0 correspondingly. There exist 10 families in the neighbourhood of nonsingular point. Over 20 families are new.
By means of Power Geometry we obtained all asymptotic expansions of solutions to the equation P5 of the following five types: power, power-logarithmic, complicated, exotic, and half-exotic, for all values of complex parameters of the equations. They form 16 and 30 families in the neighborhoods of singularpoints z=\infty and z=0, respectively. There are 10 families in the neighborhood of a nonsingular point. Over 20 families are new.
http://www.degruyter.com/view/books/9783110275667/9783110275667.v/9783110275667.v.xml