### ?

## Birational geometry via moduli spaces

Ch. 5. P. 93-132.

In this paper we connect degenerations of Fano threefolds by projections. Using mirror symmetry we transfer these connections to the side of Landau–Ginzburg models. Based on that we suggest a generalization of Kawamata’s categorical approach to birational geometry enhancing it via geometry of moduli spaces of Landau–Ginzburg models. We suggest a conjectural application to the Hassett–Kuznetsov–Tschinkel program, based on new nonrationality “invariants”—gaps and phantom categories. We formulate several conjectures about these invariants in the case of surfaces of general type and quadric bundles.

Finkelberg M. V., Rybnikov L. G., Algebraic Geometry 2014 Vol. 1 No. 2 P. 166-180

Drinfeld zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of an affine Lie algebra g^. In case g is the symplectic Lie algebra spN, we introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the zastava space isomorphically in characteristic 0. The natural Poisson structure on ...

Added: October 25, 2013

Vologodsky V., Stewart A., Advances in Mathematics 2011 Vol. 228 No. 5 P. 2688-2730

We prove a formula expressing the motivic integral (Loeser and Sebag, 2003) [34] of a K3 surface over C((t))C((t)) with semi-stable reduction in terms of the associated limit mixed Hodge structure. Secondly, for every smooth variety over a complete discrete valuation field we define an analogue of the monodromy pairing, constructed by Grothendieck in the ...

Added: December 17, 2015

Buryak A., Moscow Mathematical Journal 2016 Vol. 16 No. 1 P. 27-44

Recently R. Pandharipande, J. Solomon and R. Tessler initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers is a specific solution of a system of PDEs, that they called the open KdV equations. In this paper we show ...

Added: September 28, 2020

Gritsenko V., Nikulin V., Proceedings of the London Mathematical Society 2018 Vol. 116 No. 3 P. 485-533

We describe a new large class of Lorentzian Kac--Moody algebras. For all ranks, we classify 2-reflective hyperbolic lattices $S$ with the group of 2-reflections of finite volume and with a lattice Weyl vector. They define the corresponding hyperbolic Kac--Moody algebras of restricted arithmetic type which are graded by S. For most of them, we construct ...

Added: October 23, 2017

Aleksei Golota, Mathematische Nachrichten 2023 Vol. 296 No. 11 P. 5012-5029

The aim of this paper is to classify codimension 1 foliations ℱ with canonical
singularities and 𝜈(𝐾 ℱ ) < 3 on threefolds of general type. I prove a classification
result for foliations satisfying these conditions and having nontrivial algebraic
part. We also describe purely transcendental foliations ℱ with the canonical class
𝐾 ℱ being not big on manifolds ...

Added: September 4, 2023

Buryak A., Clader E., Tessler R., Journal of Geometry and Physics 2019 Vol. 137 P. 132-153

We study a generalization of genus-zero r-spin theory in which exactly one insertion has a negative-one twist, which we refer to as the "closed extended" theory, and which is closely related to the open r-spin theory of Riemann surfaces with boundary. We prove that the generating function of genus-zero closed extended intersection numbers coincides with the ...

Added: September 27, 2020

Galkin S., Shinder E., / Cornell University. Series math "arxiv.org". 2014. No. 1405.5154.

We find a relation between a cubic hypersurface Y and its Fano variety of lines F(Y) in the Grothendieck ring of varieties. We prove that if the class of an affine line is not a zero-divisor in the Grothendieck ring of varieties, then Fano variety of lines on a smooth rational cubic fourfold is birational ...

Added: May 21, 2014

Feigin B. L., Finkelberg M. V., Rybnikov L. G. et al., Selecta Mathematica, New Series 2011 Vol. 17 No. 2 P. 337-361

Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of GLn. We calculate the equivariant cohomology rings of the Laumon moduli spaces in terms of Gelfand-Tsetlin subalgebra of U(gln), and formulate a conjectural answer for the small quantum cohomology rings in terms of ...

Added: October 9, 2012

Gorinov A., / Cornell University. Series math "arxiv.org". 2014. No. 1402.5946.

We present a modification of the method of conical resolutions \cite{quintics,tom}. We apply our construction to compute the rational cohomology of the spaces of equations of nodal cubics in CP2, nodal quartics in CP2 and nodal cubics in CP3. In the last two cases we also compute the cohomology of the corresponding moduli spaces. ...

Added: February 26, 2014

Gritsenko V., Hulek K., , in : K3 Surfaces and Their Moduli. : Basel : Birkhäuser, 2016. P. 55-72.

In this paper we consider moduli spaces of polarized and numerically polarized Enriques surfaces. The moduli spaces of numerically polarized Enriques surfaces can be described as open subsets of orthogonal modular varieties of dimension 10. One of the consequences of our description is that there are only finitely many isomorphism classes of moduli spaces of ...

Added: October 24, 2016

Kuznetsov A., / Cornell University. Series math "arxiv.org". 2015.

We discuss a relation between the structure of derived categories of smooth projective varieties and their birational properties. We suggest a possible definition of a birational invariant, the derived category analogue of the intermediate Jacobian, and discuss its possible applications to the geometry of prime Fano threefolds and cubic fourfolds. ...

Added: November 15, 2015

Boston : International Press of Boston Inc, 2013

The Handbook of Moduli, comprising three volumes, offers a multi-faceted survey of a rapidly developing subject aimed not just at specialists but at a broad community of producers of algebraic geometry, and even at some consumers from cognate areas. The thirty-five articles in the Handbook, written by fifty leading experts, cover nearly the entire range of the field. They ...

Added: February 27, 2015

Kazaryan M., Lando S., Moscow Mathematical Journal 2012 Vol. 12 No. 2 P. 397-411

Let Mg;n denote the moduli space of genus g stable algebraic curves with n marked points. It carries the Mumford cohomology classes ki. A homology class in H*(Mg;n) is said to be k-zero if the integral of any monomial in the k-classes vanishes on it. We show that any k-zero class implies a partial differential ...

Added: May 24, 2012

Buryak A., Tessler R., Communications in Mathematical Physics 2017 Vol. 353 No. 3 P. 1299-1328

In a recent work, R. Pandharipande, J. P. Solomon and the second author have initiated a study of the intersection theory on the moduli space of Riemann surfaces with boundary. They conjectured that the generating series of the intersection numbers satisfies the open KdV equations. In this paper we prove this conjecture. Our proof goes ...

Added: September 27, 2020

Feigin B. L., Finkelberg M. V., Rybnikov L. G. et al., Selecta Mathematica, New Series 2011 Vol. 17 No. 3 P. 573-607

Laumon moduli spaces are certain smooth closures of the moduli spaces of maps from the projective line to the flag variety of GLn. We construct the action of the Yangian of sln in the cohomology of Laumon spaces by certain natural correspondences. We construct the action of the affine Yangian (two-parametric deformation of the universal ...

Added: October 9, 2012

Alexandrov A., Buryak A., Tessler R., Journal of High Energy Physics 2017 Vol. 2017 No. 123 P. 123

A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J. P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J. P. Solomon and the third ...

Added: September 27, 2020

Buryak A., Clader E., Tessler R., International Mathematics Research Notices 2022 Vol. 2022 No. 14 P. 10458-10532

We lay the foundation for a version of r-spin theory in genus zero for Riemann surfaces with boundary. In particular, we define the notion of r-spin disks, their moduli space, and the Witten bundle; we show that the moduli space is a compact smooth orientable orbifold with corners, and we prove that the Witten bundle is canonically ...

Added: October 29, 2021

Gritsenko V., Hulek K., Sankaran G., , in : Handbook of Moduli. Vol. I. Vol. I.: Boston : International Press of Boston Inc, 2013. P. 469-525.

The name "K3 surfaces" was coined by A. Weil in 1957 when he formulated a research programme for these surfaces and theirmoduli. Since then, irreducible holomorphic symplectic manifolds have been introduced as a higher dimensional analogue of K3 surfaces. In this paper we present a review of this theory starting from the definition of K3 ...

Added: March 3, 2015

Natanzon S. M., Pratoussevitch A., Russian Mathematical Surveys 2016 Vol. 71 No. 2 P. 382-384

In this paper, we present all higher spinor structures on Klein surfaces. We present also topological invariants that describe the connected components of moduli of Klein surfaces with higher spinor structure. Each connected component is represented as a cell factorable by a discrete group . ...

Added: March 25, 2016

Boston : Birkhäuser, 2013

This book features recent developments in a rapidly growing area at the interface of higher-dimensional birational geometry and arithmetic geometry. It focuses on the geometry of spaces of rational curves, with an emphasis on applications to arithmetic questions. Classically, arithmetic is the study of rational or integral solutions of diophantine equations and geometry is the ...

Added: February 14, 2013

Springer, 2020

This volume collects contributions from speakers at the INdAM Workshop “Birational Geometry and Moduli Spaces”, which was held in Rome on 11–15 June 2018. The workshop was devoted to the interplay between birational geometry and moduli spaces and the contributions of the volume reflect the same idea, focusing on both these areas and their interaction. ...

Added: August 13, 2020

Gritsenko V., / Cornell University. Series math "arxiv.org". 2010. No. 3753.

We prove that the existence of a strongly reflective modular form of a large weight implies that the Kodaira dimension of the corresponding modular variety is negative or, in some special case, it is equal to zero. Using the Jacobi lifting we construct three towers of strongly reflective modular forms with the simplest possible divisor. ...

Added: March 3, 2015

Gritsenko V., Hulek K., Sankaran G., Compositio Mathematica 2010 Vol. 146 No. 2 P. 404-434

We study the moduli spaces of polarised irreducible symplectic manifolds. By a comparison with locally symmetric varieties of orthogonal type of dimension 20, we show that the moduli space of 2d polarised (split type) symplectic manifolds which are deformation equivalent to degree 2 Hilbert schemes of a K3 surface is of general type if d ...

Added: March 3, 2015

Maxim Kazarian, Norbury P., International Mathematics Research Notices 2024 Vol. 2024 No. 3 P. 1825-1867

We construct an infinite collection of universal—independent of (g,n)—polynomials in the Miller–Morita–Mumford classes κm ∈ H2m(Mg,n, Q), defined over the moduli space of genus g stable curves with n labeled points. We conjecture vanishing of these polynomials in a range depending on g and n. ...

Added: February 19, 2024