Book chapter
Stochastic Measure of Informativity and Its Application to the Task of Stable Extraction of Features
In the paper we present a new notion of stochastic monotone measure and its application to image processing. By definition, a stochastic monotone measure is a random value with values in the set of monotone measures and it can describe a choice of random features in image processing. In this case, a monotone measure describes uncertainty in the problem of choosing the set of features with the highest in information value and its stochastic behaviour is explained by a noise that can corrupt images.
In book

The problem of image integration, which makes possible to increase self-descriptiveness of the processing-and-analysis system of multispectral images has been examined. The purpose of the image integration is to get one high resolution image by processing and integrating the several images with different spectral characteristics. The use of one of the integration method, namely wavelet transformation, is discussed.
This volume contains proceedings of the fourth conference on Analysis of Images, Social Networks and Texts (AIST’2015)1 . The first three conferences in 2012–2014 attracted a significant number of students, researchers, academics and engineers working on interdisciplinary data analysis of images, texts, and social networks. The broad scope of AIST makes it an event where researchers from different domains, such as image and text processing, exploiting various data analysis techniques, can meet and exchange ideas. We strongly believe that this may lead to crossfertilisation of ideas between researchers relying on modern data analysis machinery. Therefore, AIST brings together all kinds of applications of data mining and machine learning techniques. The conference allows specialists from different fields to meet each other, present their work, and discuss both theoretical and practical aspects of their data analysis problems. Another important aim of the conference is to stimulate scientists and people from the industry to benefit from the knowledge exchange and identify possible grounds for fruitful collaboration. The conference was held during April 9–11, 2015. Following an already established tradition, the conference was organised in Yekaterinburg, a cross-roads between European and Asian parts of Russia, the capital of Urals region.The key topics of AIST are analysis of images and videos; natural language processing and computational linguistics; social network analysis; pattern recognition, machine learning and data mining; recommender systems and collaborative technologies; semantic web, ontologies and their applications. The Program Committee and the reviewers of the conference included wellknown experts in data mining and machine learning, natural language processing, image processing, social network analysis, and related areas from leading institutions of 22 countries including Australia, Bangladesh, Belgium, Brazil, Cyprus, Egypt, Finland, France, Germany, Greece, India, Ireland, Italy, Luxembourg, Poland, Qatar, Russia, Spain, The Netherlands, UK, USA and Ukraine.
In the paper we present a new notion of stochastic monotone measure and its application to image processing. By definition, a stochastic monotone measure is a random value with values in the set of monotone measures and it can describe a choice of random features in image processing. In this case, a monotone measure describes uncertainty in the problem of choosing the set of features with the highest value of informativeness and its stochastic behavior is explained by a noise that can corrupt images.
There is a review and analysis of methods for digital image retrieval in this paper.
The article discusses the strategy of «mixing» methods, particularly prevalent in the Western research tradition. Covers the methods of text analysis, demonstrated the difference between formal or approach on the example of the study of the image of modern Russia in the texts of the American edition of «New York Times», where attention is paid to algorithms work with texts. It is shown that for the study of such phenomena as the image of the country, the combination of formal or approaches to the analysis of the text is a necessary and natural research phenomenon.
The problem of automatic detection of the moving forklift truck in video data is explored. This task is formulated in terms of computer vision approach as a moving object detection in noisy environment. It is shown that the state-of-the-art local descriptors (SURF, SIFT, FAST, ORB) are not characterized with satisfactory detection quality if the camera resolution is low, the lighting is changed dramatically and shadows are observed. In this paper we propose to use a simple mathematical morphological algorithm to detect the presence of a cargo on the forklift truck. Its first step is the estimation of the movement direction and the front part of the truck by using the updating motion history image. The second step is the application of Canny contour detection and binary morphological operations in front of the moving object to estimate simple geometric features of empty forklift. The algorithm is implemented with the OpenCV library. Our experimental study shows that the best results are achieved if the difference of the width of bounding rectangles is used as a feature. Namely, the detection accuracy is 78.7% (compare with 40% achieved by the best local descriptor), while the average frame processing time is only 5 ms (compare with 35 ms for the fastest descriptor).
This study investigated the method of semantic image analysis by using a set of neuron-like detectors of foreground objects. This method is intended to find different types of foreground objects and to determine properties of these objects. As a result of semantic analysis the semantic descriptor of the image is created. The descriptor is a set of foreground objects of the image and a set of properties for each object. The distance between images is defined as distance between their semantic descriptors. Using the concept of distance between images, "semantically similarity" between images or videos is defined.