Book chapter
Влияние дефектного слоя на подвижность носителей в молекулярно допированных полимерах
С. 229-236.
We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.
The shape of time-of-flight curves in the mode of subsurface irradiation of samples with lowenergy electrons is analyzed for free_standing films of a typical molecularly doped polymer of different thicknesses (11–45 μm). Special attention is paid to comparison of curves registered for both sides of the samples. The data confirm the hypothesis that the defective layer is formed owing to sublimation of dopant molecules during sample preparation and qualitatively agree with predictions of the two_layer multiple_trapping model.
29.19.23 Теория электрических свойств твердых тел 29.19.25 Взаимодействие проникающего излучения с твердыми теламиABSTRACT: The time-of-flight (TOF) transients of solution-cast, free-standing films of N,N′-diphenyl-N,N-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′diamine (TPD) in bisphenol A polycarbonate (PC) have been studied using electron gun induced charge generation. This molecularly doped polymer (MDP) has been shown to exhibit perfectly flat plateaus on its time-of-flight curves with optical excitation. Our TOF results with continuously changing electron energies, as well as numerical calculations using a multiple trapping model with a Gaussian trap distribution (MTMg), suggest that charge carrier transport in this molecularly doped polymer is nonequilibrium and the flat plateaus can be explained by the presence of a thin surface layer depleted of transport material. The depleted surface layers on samples of this molecularly doped polymer are extremely thin (less than 0.12 μm), with those relating to the release side (contacting a substrate during coating/drying procedure) being much smaller than for the free side exposed to air. Since TPD-doped PC and a tetraphenylbenzidine polymer containing the TPD moiety in its main chain served as the prototype materials for the concept of “trap-free” carrier transport, we have also discussed this in detail.