Book chapter
Теоретико-информационный подход в задаче автоматического распознавания изображений
In book

The problem of automatic image recognition based on the minimum information discrimination principle is formulated and solved. Color histograms comparison in the Kullback–Leibler information metric is proposed. It’s combined with method of directed enumeration alternatives as opposed to complete enumeration of competing hypotheses. Results of an experimental study of the Kullback-Leibler discrimination in the problem of face recognition with a large database are presented. It is shown that the proposed algorithm is characterized by increased accuracy and reliability of image recognition.
The article is devoted to the problem of image recognition in real-time applications with a large database containing hundreds of classes. The directed enumeration method as an alternative to exhaustive search is examined. This method has two advantages. First, it could be applied with measures of similarity which do not satisfy metric properties (chi-square distance, Kullback-Leibler information discrimination, etc). Second, the directed enumeration method increases recognition speed even in the most difficult cases which seem to be very important in practical terms. In these cases many neighbors are located at very similar distances. In this paper we present the results of an experimental study of the directed enumeration method with comparison of color- and gradient-orientation histograms in solving the problem of face recognition with well-known datasets (Essex, FERET). It is shown that the proposed method is characterized by increased computing efficiency of automatic image recognition (3-12 times in comparison with a conventional nearest neighbor classifier).
The problem of automatic image recognition based on the minimum information discrimination principle is formulated and solved. Discrimination calculation in the Kullback–Leibler information metric based on colour histograms comparison is proposed. It’s combined with a method of directed enumeration of the set of alternatives as opposed to the method of complete enumeration of competing hypotheses. Results of an experimental study of the discrimination in the problem of face images recognition are presented. It is shown that the proposed algorithm is characterized by increased accuracy and reliability of automatic image recognition.
Studied is a possibility of increasing the accuracy of diagnostics by examining a number of diagnostic rules as a set of expert assessments, which allows one to combine them («mix of expert opinions»). Proposed is to use of the principle of minimum-information-mismatch in Kullback - Leibler metric to highlight the rule most appropriate for classification of a particular object. Program and results of experimental study are presented in the problem of automatic recognition of gray-scale images. It is shown that the developed approach can significantly improve the quality of diagnostics.