• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Menu

Book chapter

Stability conditions for a multiserver queueing system with a regenerative input flow and simultaneous service of a customer by a random number of servers

P. 213-241.
Afanaseva L., Grishunina S.

We study the stability conditions of the multiserver queueing system in which each customer requires a random number of servers simultaneously. The input flow is supposed to be a regenerative one and service times of a given customer are independent at the occupied servers. The service time has an exponential, phase-type or hyper-exponential distribution. We define an auxiliary service process that is the number of completed services by all m servers under the assumption that there are always customers in the system. Then we construct the sequence of common regeneration points for the regenerative input flow and the auxiliary service process. It allows us to deduce the stability criterion of the model under consideration. It turns out that the stability condition does not depend on the structure of the input flow, only the rate of this process plays a role. Nevertheless the distribution of the service time is a very important factor. We give examples which show that the stability condition can not be expressed in terms of the mean of the service time.

In book

Vol. 94: Queueing systems. Iss. 3-4: Queueing systems. Netherlands: Springer, 2020.