• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

A Method for Community Detection in Networks with Mixed Scale Features at Its Nodes

P. 3-14.

The problem of community detection in a network with features at its nodes takes into account both the graph structure and node features. The goal is to find relatively dense groups of interconnected entities sharing some features in common. Algorithms based on probabilistic community models require the node features to be categorical. We use a data-driven model by combining the least-squares data recovery criteria for both, the graph structure and node features. This allows us to take into account both quantitative and categorical features. After deriving an equivalent complementary criterion to optimize, we apply a greedy-wise algorithm for detecting communities in sequence. We experimentally show that our proposed method is effective on both real-world data and synthetic data. In the cases at which attributes are categorical, we compare our approach with state-of-the-art algorithms. Our algorithm appears competitive against them.

In book

Vol. 943: 9th International Conference on Complex Networks and Their Application, COMPLEX NETWORKS 2020. Springer, 2020.