• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Grammar Logics in Nested Sequent Calculus: Proof Theory and Decision Procedures

P. 516-537.
Tiu A., Ianovski E., Goré R.

A grammar logic refers to an extension of the multi-modal logic K in which the modal axioms are generated from a formal grammar. We consider a proof theory, in nested sequent calculus, of grammar logics with converse, i.e., every modal operator [a] comes with a converse [¯a]. Extending previous works on nested sequent systems for tense logics, we show all grammar logics (with or without converse) can be formalised in nested sequent calculi, where the axioms are internalised in the calculi as structural rules. Syntactic cut-elimination for these calculi is proved using a procedure similar to that for display logics. If the grammar is context-free, then one can get rid of all structural rules, in favor of deep inference and additional propagation rules. We give a novel semi-decision procedure for context-free grammar logics, using nested sequent calculus with deep inference, and show that, in the case where the given context-free grammar is regular, this procedure terminates. Unlike all other existing decision procedures for regular grammar logics in the literature, our procedure does not assume that a finite state automaton encoding the axioms is given

In book

Edited by: T. Bolander, T. Brauner, S. Ghilardi. Iss. 9. L.: College Publications, 2012.