Book chapter
A new polynomial-time algorithm for calculating upper bounds on resource usage for RCPSP problem
The Resource-Constrained Project Scheduling Problem (RCPSP) is considered. This problem is NP-hard in strong sense (Garey and Johnson 1975). In this paper, a new polynomial-time approach is developed to find an upper bound on resource consumption. This bound can be also used to calaculate a lower bound for makespan. The procedure also helps to increase the efficiency of existed propagators and to improve constraint programming model performances by tightening decision variables domains.
This is the first book on the U.S. presidential election system to analyze the basic principles underlying the design of the existing system and those at the heart of competing proposals for improving the system. The book discusses how the use of some election rules embedded in the U.S. Constitution and in the Presidential Succession Act may cause skewed or weird election outcomes and election stalemates. The book argues that the act may not cover some rare though possible situations which the Twentieth Amendment authorizes Congress to address. Also, the book questions the constitutionality of the National Popular Vote Plan to introduce a direct popular presidential election de facto, without amending the Constitution, and addresses the plan’s “Achilles’ Heel.” In particular, the book shows that the plan may violate the Equal Protection Clause from the Fourteenth Amendment of the Constitution. Numerical examples are provided to show that the counterintuitive claims of the NPV originators and proponents that the plan will encourage presidential candidates to “chase” every vote in every state do not have any grounds. Finally, the book proposes a plan for improving the election system by combining at the national level the “one state, one vote” principle – embedded in the Constitution – and the “one person, one vote” principle. Under this plan no state loses its current Electoral College benefits while all the states gain more attention of presidential candidates.
This chapter describes an economic model for independent job flow management in distributed computing environments with non-dedicated resources. The model is based on the concept of fair resource distribution between users and owners of computational nodes by means of economic mechanisms in a virtual organization. Scheduling is performed in cycles in accordance with dynamically updated schedules on local processor nodes. Schedule optimization is performed using dynamic programming methods using the set of criteria in accordance with the economic policy of the virtual organization.
This chapter describes an economic model for independent job flow management in distributed computing environments with non-dedicated resources. The model is based on the concept of fair resource distribution between users and owners of computational nodes by means of economic mechanisms in a virtual organization. Scheduling is performed in cycles in accordance with dynamically updated schedules on local processor nodes. Schedule optimization is performed using dynamic programming methods using the set of criteria in accordance with the economic policy of the virtual organization.
This work presents slot selection algorithms in economic models for independent job batch scheduling in distributed computing with non-dedicated resources. Existing approaches towards resource co-allocation and multiprocessor job scheduling in economic models of distributed computing are based on search of time-slots in resource occupancy schedules. The sought time-slots must match requirements of necessary span, computational resource properties, and cost. Usually such scheduling methods consider only suited variant of time-slot set. This work discloses a scheduling scheme that features multi-variant search. Two algorithms of linear complexity for search of alternative variants are proposed and compared. Having several optional resource configurations for each job makes an opportunity to perform an optimization of execution of the whole batch of jobs and to increase overall efficiency of scheduling.
In this paper presented slot selection algorithms in economic model for independent job batch scheduling in a distributed computing with non-dedicated resources. Exiting approaches towards resource co-allocation and multiprocessor job scheduling in economic models of distributed computing are based on search of time-slots in resource occupancy schedules. The sought time-slots must match requirements of necessary span, computational resource properties, and cost. Usually such scheduling methods consider only one suited variant of time-slot set. This paper discloses a scheduling scheme that features multi-variant search. Two algorithms of linear complexity for search of alternative variants are compared. Having several optional resource configurations for each job makes an opportunity to perform an optimization of execution of the whole bath of jobs and to increase overall efficiency of scheduling.
Purpose: This paper aims to analyse three individual foresight projects referring to the natural resources sector in Russia, their interconnection and influence on policy decision making. Design/methodology/approach: The three foresight studies used different methodologies depending on the project's goal. First the projects' interconnections are explained. Second, each of the studies is characterised from different viewpoints, including their aims, structures, methodologies and results. Finally their influence on policy-making is evaluated. Findings: The paper concludes that implementation of these three interrelated studies allows identification of S&T&I priorities that have a strong connection with policy decision making. Therefore, on the basis of this experience, it is suggested that a widespread national Delphi survey for the identification of science and technology (S&T) priorities should be complemented by the identification of key long-term demand for resources and reshaped management systems. Originality/value: For the first time the paper presents an analysis of Russian foresight projects connected to the natural resources area and an evaluation of their influence on policy decision making.
In this work, we present slot selection algorithms for job batch scheduling in distributed computing with non-dedicated resources. Jobs are parallel applications and these applications are independent. Existing approaches towards resource co-allocation and parallel job scheduling in economic models of distributed computing are based on search of time-slots in resource occupancy schedules. The sought time-slots must match requirements of necessary span, computational resource properties, and cost. Usually such scheduling methods consider only one suited variant of time-slot set. This work discloses a scheduling scheme that features multi-variant search. Two algorithms of linear complexity for search of alternative variants are proposed. Having several optional resource configurations for each job makes an opportunity to perform an optimization of execution of the whole batch of jobs and to increase overall efficiency of scheduling.