### Book chapter

## A paradigm for codimension one foliations

We summarize some of the recent works, devoted to the study of one-dimensional (pseudo)group actions and codimension one foliations. We state a conjectural alternative for such actions (generalizing the already obtained results) and describe the properties in both alternative cases. We also discuss the generalizations for holomorphic one-dimensional actions. Finally, we state some open questions that seem to be already within the reach.

### In book

We investigate the notion of complex rotation number which was introduced by V.I.Arnold in 1978. Let f: R/Z -> R/Z be a (real) analytic orientation preserving circle diffeomorphism and let omega in C/Z be a parameter with positive imaginary part. Construct a complex torus by glueing the two boundary components of the annulus { z in C/Z : 0< Im(z) < Im(omega)} via the map f+omega. This complex torus is isomorphic to C/(Z+ tau Z) for some appropriate tau in C/Z. According to V.Moldavskis, if the ordinary rotation number rot(f+omega0) is Diophantine and if omega tends to omega0 non tangentially to the real axis, then tau tends to rot(f+omega0). We show that the Diophatine and non tangential assumptions are unnecessary: if rot(f+omega0) is irrational then tau tends to rot(f+omega0) as omega tends to omega0. This, together with results of N. Goncharuk [4], motivates us to introduce a new fractal set (``bubbles'') given by the limit values of tau as omega tends to the real axis. For the rational values of rot (f+omega0), these limits do not necessarily coincide with rot(f+omega0) and form a countable number of analytic loops in the upper half-plane.

The volume is dedicated to Stephen Smale on the occasion of his 80th birthday. Besides his startling 1960 result of the proof of the Poincaré conjecture for all dimensions greater than or equal to five, Smale’s ground breaking contributions in various fields in Mathematics have marked the second part of the 20th century and beyond. Stephen Smale has done pioneering work in differential topology, global analysis, dynamical systems, nonlinear functional analysis, numerical analysis, theory of computation and machine learning as well as applications in the physical and biological sciences and economics. In sum, Stephen Smale has manifestly broken the barriers among the different fields of mathematics and dispelled some remaining prejudices. He is indeed a universal mathematician. Smale has been honored with several prizes and honorary degrees including, among others, the Fields Medal(1966), The Veblen Prize (1966), the National Medal of Science (1996) and theWolf Prize (2006/2007).

The present paper is devoted to the research into the topical questions of network evolution modeling considering the constant changes in the data environment as well as the data exchange rate. A two-level approach to the network community analysis based on the division into macro- and micro-levels of monitoring is suggested. Functionality of both levels is described. Suggestions for investigation and modeling of data flows in a network represented by a dynamical system of message senders and recipients are presented.

Different notions of attractors and relations between them are considered. The major new result claims that Lyapunov unstable Milnor attractors are topologically generic in a space of diffeomorphisms of any manifold of dimension greater than one. This result is due to the second author. A sketch of the proof is given. New robust properties of diffeomorphisms obtained with the help of the so called Ilyashenko-Gordetski strategy are described.

Nonlinear differential dynamic model of the relation between the branches of production was proposed. Mathematically, this model is expressed as a system of first-order ODE. Dynamic variables of the model – the value of the output of each branch of production. Each differential equation of the system includes independent growth and diminution of finished goods; growth and decline of production related to the production of allied industries. Two models were proposed: a model with Malthusian products growth (model with no restrictions on the amount of product), the model with the Verhulst limiting of the growth of output. The equilibrium points of dynamical systems, system stability were determined as well as the qualitative analysis of dynamic systems was made.

The article is devoted to a particular case of Ivrǐ's conjecture on periodic orbits of billiards. The general conjecture states that the set of periodic orbits of the billiard in a domain with smooth boundary in the Euclidean space has measure zero. In this article we prove that for any domain with piecewise C 4-smooth boundary in the plane the set of quadrilateral trajectories of the corresponding billiard has measure zero.

Conference covers both fundamental problems ofthe theory, and application to research of complex organizational and technical systems.