• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Scientific Matchmaker: Collaborator Recommender System

P. 1-12.
Makarov I., Bulanov O., Olga Gerasimova, Natalia Mescheryakova, Zhukov L. E., Karpov I.

Modern co-authorship networks contain hidden patterns of researchers interaction and publishing activities. We aim to provide a system for selecting a collaborator for joint research or an expert on a given list of topics. We have improved a recommender system for finding possible collaborator with respect to research interests and predicting quality and quantity of the anticipated publications. Our system is based on a co-authorship network derived from the bibliographic database, as well as content information on research papers obtained from SJR Scimago, staff information and the other features from the open data of researchers profiles. We formulate the recommendation problem as a weighted link prediction within the co-authorship network and evaluate its prediction for strong and weak ties in collaborative communities.