Book chapter
Классификация расстройств аутистического спектра и нормального развития на основе сходства разбиений сетевых структур мозга
In book
The mass application of mobile cardiographs already leads to both explosive quantitative growth of the number of patients available for ECG study, registered daily outside the hospital (Big DATA in cardiology), and to the emergence of new qualitative opportunities for the study of long-term oscillatory processes (weeks, months, years) of the dynamics of the individual state of the Cardiovascular system of any patient.
The article demonstrates that new opportunities of long - term continuous monitoring of the Cardiov ascular system state of patients ' mass allow to reveal the regularities (DATA MINING) of Cardiovascular system dynamics, leading to the hypothesis of the existence of an adequate Cardiovascular system model as a distributed nonlinearself - oscillating system of the FPU recurrence model class [1]. The presence of a meaningful mathematical model of Cardiovascular system within the framework of the FPU auto – recurrence [2], as a refinement of the traditional model of studying black box, further allows us to offer new computational methods for ECG analysis and prediction of Cardiovascular system dynamics for a refined diagnosis and evaluation of the effectiveness of the treatment.
This paper is an overview of the current issues and tendencies in Computational linguistics. The overview is based on the materials of the conference on computational linguistics COLING’2012. The modern approaches to the traditional NLP domains such as pos-tagging, syntactic parsing, machine translation are discussed. The highlights of automated information extraction, such as fact extraction, opinion mining are also in focus. The main tendency of modern technologies in Computational linguistics is to accumulate the higher level of linguistic analysis (discourse analysis, cognitive modeling) in the models and to combine machine learning technologies with the algorithmic methods on the basis of deep expert linguistic knowledge.
The paper makes a brief introduction into multiple classifier systems and describes a particular algorithm which improves classification accuracy by making a recommendation of an algorithm to an object. This recommendation is done under a hypothesis that a classifier is likely to predict the label of the object correctly if it has correctly classified its neighbors. The process of assigning a classifier to each object involves here the apparatus of Formal Concept Analysis. We explain the principle of the algorithm on a toy example and describe experiments with real-world datasets.
The volume contains the abstracts of the 12th International Conference "Intelligent Data Processing: Theory and Applications". The conference is organized by the Russian Academy of Sciences, the Federal Research Center "Informatics and Control" of the Russian Academy of Sciences and the Scientific and Coordination Center "Digital Methods of Data Mining". The conference has being held biennially since 1989. It is one of the most recognizable scientific forums on data mining, machine learning, pattern recognition, image analysis, signal processing, and discrete analysis. The Organizing Committee of IDP-2018 is grateful to Forecsys Co. and CFRS Co. for providing assistance in the conference preparation and execution. The conference is funded by RFBR, grant 18-07-20075. The conference website http://mmro.ru/en/.
The paper describes the results of an experimental study of topic models applied to the task of single-word term extraction. The experiments encompass several probabilistic and non-probabilistic topic models and demonstrate that topic information improves the quality of term extraction, as well as NMF with KL-divergence minimization is the best among the models under study.
Technology mining (TM) helps to acquire intelligence about the evolution of research and development (R&D), technologies, products, and markets for various STI areas and what is likely to emerge in the future by identifying trends. The present chapter introduces a methodology for the identification of trends through a combination of “thematic clustering” based on the co-occurrence of terms, and “dynamic term clustering” based on the correlation of their dynamics across time. In this way, it is possible to identify and distinguish four patterns in the evolution of terms, which eventually lead to (i) weak signals of future trends, as well as (ii) emerging, (iii) maturing, and (iv) declining trends. Key trends identified are then further analyzed by looking at the semantic connections between terms identified through TM. This helps to understand the context and further features of the trend. The proposed approach is demonstrated in the field photonics as an emerging technology with a number of potential application areas.
In an effort to make reading more accessible, an automated readability formula can help students to retrieve appropriate material for their language level. This study attempts to discover and analyze a set of possible features that can be used for single-sentence readability prediction in Russian. We test the influence of syntactic features on predictability of structural complexity. The readability of sentences from SynTagRus corpus was marked up manually and used for evaluation.
Data management and analysis is one of the fastest growing and most challenging areas of research and development in both academia and industry. Numerous types of applications and services have been studied and re-examined in this field resulting in this edited volume which includes chapters on effective approaches for dealing with the inherent complexity within data management and analysis. This edited volume contains practical case studies, and will appeal to students, researchers and professionals working in data management and analysis in the business, education, healthcare, and bioinformatics areas.