### Book chapter

## Ограничения на когомологии гиперкэлеровых многообразий

### In book

A projective manifold is algebraically hyperbolic if the degree of any curve is bounded from above by its genus times a constant, which is independent from the curve. This is a property which follows from Kobayashi hyperbolicity. We prove that hyperkähler manifolds are not algebraically hyperbolic when the Picard rank is at least 3, or if the Picard rank is 2 and the SYZ conjecture on existence of Lagrangian fibrations is true. We also prove that if the automorphism group of a hyperkähler manifold is infinite then it is algebraically nonhyperbolic.

The transcendental Hodge lattice of a projective manifold M is the smallest Hodge substructure in pth cohomology which contains all holomorphic p-forms. We prove that the direct sum of all transcendental Hodge lattices has a natural algebraic structure, and compute this algebra explicitly for a hyperkähler manifold. As an application, we obtain a theorem about dimension of a compact torus T admitting a holomorphic symplectic embedding to a hyperkähler manifold M. If M is generic in a d-dimensional family of deformations, then dimT≥2^[(d+1)/2].

Let M be an irreducible holomorphically symplectic manifold. We show that all faces of the Kähler cone of M are hyperplanes Hi orthogonal to certain homology classes, called monodromy birationally minimal (MBM) classes. Moreover, the Kähler cone is a connected component of a complement of the positive cone to the union of all Hi. We provide several characterizations of the MBM classes. We show the invariance of MBM property by deformations, as long as the class in question stays of type (1,1). For hyperkähler manifolds with Picard group generated by a negative class z, we prove that ±z is Q-effective if and only if it is an MBM class. We also prove some results toward the Morrison–Kawamata cone conjecture for hyperkähler manifolds.