• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Model checking for symbolic-heap separation logic with inductive predicates

P. 84-96.
Brotherston J., Gorogiannis N., Kanovich Max, Rowe R.

We investigate the *model checking* problem for symbolic-heap separation logic with user-defined inductive predicates, i.e., the problem of checking that a given stack-heap memory state satisfies a given formula in this language, as arises e.g. in software testing or runtime verification. First, we show that the problem is *decidable*; specifically, we present a bottom-up fixed point algorithm that decides the problem and runs in exponential time in the size of the problem instance. Second, we show that, while model checking for the full language is EXPTIME-complete, the problem becomes NP-complete or PTIME-solvable when we impose natural syntactic restrictions on the schemata defining the inductive predicates. We additionally present NP and PTIME algorithms for these restricted fragments. Finally, we report on the experimental performance of our procedures on a variety of specifications extracted from programs, exercising multiple combinations of syntactic restrictions.

We are happy to be accepted to the POPL, one of the most prestigious conferencies in computer science.

In addition to that, our paper has been honored with the POPL stamp "Artefact evaluated" (see the attachment)