Book chapter
Scalable Estimates of Concept Stability
Data mining aims at finding interesting patterns from datasets, where “interesting” means reflecting intrinsic dependencies in the domain of interest rather than just in the dataset. Concept stability is a popular relevancy measure in FCA. Experimental results of this paper show that high stability of a concept for a context derived from the general population suggests that concepts with the same intent in other samples drawn from the population have also high stability. A new estimate of stability is introduced and studied. It is experimentally shown that the introduced estimate gives a better approximation than the Monte Carlo approach introduced earlier.
In book

A novel approach to triclustering of a three-way binary data is proposed. Tricluster is defined in terms of Triadic Formal Concept Analysis as a dense triset of a binary relation Y , describing relationship between objects, attributes and conditions. This definition is a relaxation of a triconcept notion and makes it possible to find all triclusters and triconcepts contained in triclusters of large datasets. This approach generalizes the similar study of concept-based biclustering.
In the public discourse, cinematic views on the analysis of movies traditionally prevail. The author suggests another approach: in the course of the experiment aimed to reveal the audience's perception of the film „Welcome to Zombieland the author discovers an atypical interpretation of this horror film as an instrument of educating the young generation, those features of the ideological message of the film that can transform any genre into, it would seem, its complete opposite - a collection of contemporary society norms and behavior patterns. The main conclusion of the article is that the perception of a film is a complex social action which always goes beyond any cinematic interpretations.
The problem of detecting terms that can be interesting to the advertiser is considered. If a company has already bought some advertising terms which describe certain services, it is reasonable to find out the terms bought by competing companies. A part of them can be recommended as future advertising terms to the company. The goal of this work is to propose better interpretable recommendations based on FCA and association rules.
Formal Concept Analysis (FCA) is a mathematical technique that has been extensively applied to Boolean data in knowledge discovery, information retrieval, web mining, etc. applications. During the past years, the research on extending FCA theory to cope with imprecise and incomplete information made significant progress. In this paper, we give a systematic overview of the more than 120 papers published between 2003 and 2011 on FCA with fuzzy attributes and rough FCA. We applied traditional FCA as a text-mining instrument to 1072 papers mentioning FCA in the abstract. These papers were formatted in pdf files and using a thesaurus with terms referring to research topics, we transformed them into concept lattices. These lattices were used to analyze and explore the most prominent research topics within the FCA with fuzzy attributes and rough FCA research communities. FCA turned out to be an ideal metatechnique for representing large volumes of unstructured texts.
A scalable method for mining graph patterns stable under subsampling is proposed. The existing subsample stability and robustness measures are not antimonotonic according to definitions known so far. We study a broader notion of antimonotonicity for graph patterns, so that measures of subsample stability become antimonotonic. Then we propose gSOFIA for mining the most subsample-stable graph patterns. The experiments on numerous graph datasets show that gSOFIA is very efficient for discovering subsample-stable graph patterns.
An initial–boundary value problem for the generalized Schrödinger equation in a semi-infinite strip is solved.
A new family of two level finite-difference schemes with averaging over spatial variables on a finite mesh is constructed, which covers a set of finite-difference schemes built using various methods. For the family, an abstract approximate transparent boundary condition (TBC) is formulated and the solutions are proved to be absolutely stable in two norms with respect to both initial data and free terms. A discrete TBC is derived, and the stability of the family of schemes with this TBC is proved. The implementation of schemes with the discrete TBC is discussed.