• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Additive actions on projective hypersurfaces

P. 17-33.
Arzhantsev I., Popovskiy A.

By an additive action on a hypersurface H in a projective space we mean an effective action of a commutative unipotent group on the projective space which leaves H invariant and acts on H with an open orbit. Brendan Hassett and Yuri Tschinkel have shown that actions of commutative unipotent groups on projective spaces can be described in terms of local algebras with some additional data. We prove that additive actions on projective hypersurfaces correspond to invariant multilinear symmetric forms on local algebras. It allows us to obtain explicit classification results for non-degenerate quadrics and quadrics of corank one.

In book

Additive actions on projective hypersurfaces
Cheltsov I., Ciliberto C., McKernan J. et al. Vol. 79: Springer Proceedings in Mathematics & Statistics. Heidelberg; NY; Dordrecht; L.: Springer International Publishing, 2014.