• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Book chapter

Selecting the Minkowski Exponent for Intelligent K-Means with Feature Weighting

P. 1250-1257.
Mirkin B., Amorim R.

Recently, a three-stage version of K-Means has been introduced, at which not only clusters and their centers, but also feature weights are adjusted to minimize the summary p-th power of the Minkowski p-distance between entities and centroids of their clusters. The value of the Minkowski exponent p appears to be instrumental in the ability of the method to recover clusters hidden in data. This paper advances into the problem of finding the best p for a Minkowski metric-based version of K-Means, in each of the following two settings: semi-supervised and unsupervised. This paper presents experimental evidence that solutions found with the proposed approaches are sufficiently close to the optimum.