### Book

## Formal Concept Analysis Meets Information Retrieval 2013

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data analysis and classication, introduced and detailed in the book of Bernhard Ganter and Rudolf Wille, \Formal Concept Analysis", Springer 1999. The area came into being in the early 1980s and has since then spawned over 10000 scientic publications and a variety of practically deployed tools. FCA allows one to build from a data table with objects in rows and attributes in columns a taxonomic data structure called concept lattice, which can be used for many purposes, especially for Knowledge Discovery and Information Retrieval. The \Formal Concept Analysis Meets Information Retrieval" (FCAIR) workshop collocated with the 35th European Conference on Information Retrieval (ECIR 2013) was intended, on the one hand, to attract researchers from FCA community to a broad discussion of FCA-based research on information retrieval, and, on the other hand, to promote ideas, models, and methods of FCA in the community of Information Retrieval. This volume contains 11 contributions to FCAIR workshop (including 3 abstracts for invited talks and tutorial) held in Moscow, on March 24, 2013. All submissions were assessed by at least two reviewers from the program committee of the workshop to which we express our gratitude. We would also like to thank the co-organizers and sponsors of the FCAIR workshop: Russian Foundation for Basic Research, National Research University Higher School of Economics, and Yandex.

We propose a new approach for Collaborative ltering which is based on Boolean Matrix Factorisation (BMF) and Formal Concept Analysis. In a series of experiments on real data (Movielens dataset) we compare the approach with the SVD- and NMF-based algorithms in terms of Mean Average Error (MAE). One of the experimental con- sequences is that it is enough to have a binary-scaled rating data to obtain almost the same quality in terms of MAE by BMF than for the SVD-based algorithm in case of non-scaled data.

This book constitutes the refereed proceedings of the 20th International Symposium on String Processing and Information Retrieval, SPIRE 2013, held in Jerusalem, Israel, in October 2013. The 18 full papers, 10 short papers were carefully reviewed and selected from 60 submissions. The program also featured 4 keynote speeches. The following topics are covered: fundamentals algorithms in string processing and information retrieval; SP and IR techniques as applied to areas such as computational biology, DNA sequencing, and Web mining.

A scalable method for mining graph patterns stable under subsampling is proposed. The existing subsample stability and robustness measures are not antimonotonic according to definitions known so far. We study a broader notion of antimonotonicity for graph patterns, so that measures of subsample stability become antimonotonic. Then we propose gSOFIA for mining the most subsample-stable graph patterns. The experiments on numerous graph datasets show that gSOFIA is very efficient for discovering subsample-stable graph patterns.

There is a lot of usefulness measures of patterns in data mining. This paper is focused on the measures used in Formal Concept Analysis (FCA). In particular, concept stability is a popular relevancy measure in FCA. Experimental results of this paper show that high stability of a pattern in a given dataset derived from the general population suggests that the stability of that pattern is high in another dataset derived from the same population. At the second part of the paper, a new estimate of stability is introduced and studied. It es performance is evaluated experimentally. And it is shown that it is more efficient.

The 4th International Conference on Educational Data Mining (EDM 2011) brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large datasets to answer educational research questions. The conference, held in Eindhoven, The Netherlands, July 6-9, 2011, follows the three previous editions (Pittsburgh 2010, Cordoba 2009 and Montreal 2008), and a series of workshops within the AAAI, AIED, EC-TEL, ICALT, ITS, and UM conferences. The increase of e-learning resources such as interactive learning environments, learning management systems, intelligent tutoring systems, and hypermedia systems, as well as the establishment of state databases of student test scores, has created large repositories of data that can be explored to understand how students learn. The EDM conference focuses on data mining techniques for using these data to address important educational questions.

Relationships between proto-fuzzy concepts, crisply generated fuzzy concepts, and pattern structures are considered. It is shown that proto-fuzzy concepts are closely related to crisply generated fuzzy concepts in the sense that the mappings involved in the definitions coincide for crisp subsets of attributes. Moreover, a proto-fuzzy concept determines a crisp subset of attributes, which generates a (crisply generated) fuzzy concept. However, the reverse is true only in part: given a crisp subset of attributes, one can find a proto-fuzzy concept whose intent includes (but not necessarily coincides with) the given subset of attributes. Interval pattern concepts are shown to be related to crisply generated formal concepts. In particular, every crisply closed subset of objects is an extent of an interval pattern concept. Also, we establish some properties of the collection of formal concepts for a given fuzzy context.

A vast amount of documents in the Web have duplicates, which is a challenge for developing efficient methods that would compute clusters of similar documents. In this paper we use an approach based on computing (closed) sets of attributes having large support (large extent) as clusters of similar documents. The method is tested in a series of computer experiments on large public collections of web documents and compared to other established methods and software, such as biclustering, on same datasets. Practical efficiency of different algorithms for computing frequent closed sets of attributes is compared.

Formal Concept Analysis (FCA) is an unsupervised clustering technique and many scientific papers are devoted to applying FCA in Information Retrieval (IR) research. We collected 103 papers published between 2003-2009 which mention FCA and information retrieval in the abstract, title or keywords. Using a prototype of our FCA-based toolset CORDIET, we converted the pdf-files containing the papers to plain text, indexed them with Lucene using a thesaurus containing terms related to FCA research and then created the concept lattice shown in this paper. We visualized, analyzed and explored the literature with concept lattices and discovered multiple interesting research streams in IR of which we give an extensive overview. The core contributions of this paper are the innovative application of FCA to the text mining of scientific papers and the survey of the FCA-based IR research.

Doctoral students were invited to the Doctoral Consortium held in conjunction with the main conference of ECIR 2013. The Doctoral Consortium aimed to provide a constructive setting for presentations and discussions of doctoral students’ research projects with senior researchers and other participating students. The two main goals of the Doctoral Consortium were: 1) to advise students regarding current critical issues in their research; and 2) to make students aware of the strengths and weakness of their research as viewed from different perspectives. The Doctoral Consortium was aimed for students in the middle of their thesis projects; at minimum, students ought to have formulated their research problem, theoretical framework and suggested methods, and at maximum, students ought to have just initiated data analysis. The Doctoral Consortium took place on Sunday, March 24, 2013, at the ECIR 2013 venue, and participation is by invitation only. The format was designed as follows: The doctoral students presents summaries of their work to other participating doctoral students and the senior researchers. Each presentation was followed by a plenary discussion, and individual discussion with one senior advising researcher. The discussions in the group and with the advisors were intended to help the doctoral student to reflect on and carry on with their thesis work.

During the last three decades, formal concept analysis (FCA) became a well-known formalism in data analysis and knowledge discovery because of its usefulness in important domains of knowledge discovery in databases (KDD) such as ontology engineering, association rule mining, machine learning, as well as relation to other established theories for representing knowledge processing, like description logics, conceptual graphs, and rough sets. In early days, FCA was sometimes misconceived as a static crisp hardly scalable formalism for binary data tables. In this paper, we will try to show that FCA actually provides support for processing large dynamical complex (may be uncertain) data augmented with additional knowledge.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.