### Book

## Robust Data Mining

Summarizes the latest applications of robust optimization in data mining.

An essential accompaniment for theoreticians and data miners Data uncertainty is a concept closely related with most real life applications that involve data collection and interpretation. Examples can be found in data acquired with biomedical instruments or other experimental techniques. Integration of robust optimization in the existing data mining techniques aims to create new algorithms resilient to error and noise.

In this paper, we use robust optimization models to formulate the support vector machines (SVMs) with polyhedral uncertainties of the input data points. The formulations in our models are nonlinear and we use Lagrange multipliers to give the first-order optimality conditions and reformulation methods to solve these problems. In addition, we have proposed the models for transductive SVMs with input uncertainties.

The paper considers the phoneme recognition by facial expressions of a speaker in voice-activated control systems. We have developed a neural network recognition algorithm by using the phonetic words decoding method and the requirement for isolated syllable pronunciation of voice commands. The paper presents the experimental results of viseme (facial and lip position corresponding to a particular phoneme) classification of Russian vowels. We show the dependence of the classification accuracy on the used classifier (multilayer feed-forward network, support vector machine, k-nearest neighbor method), image features (histogram of oriented gradients, eigenvectors, SURF local descriptors) and the type of camera (built-in or Kinect one). The best accuracy of speaker-dependent recognition is shown to be 85% for a built-in camera and 96% for Kinect depth maps when the classification is performed with the histogram of oriented gradients and the support vector machine.

This book constitutes the refereed proceedings of the 10th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2014, held in St. Petersburg, Russia in July 2014. The 40 full papers presented were carefully reviewed and selected from 128 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multimedia data types such as image mining, text mining, video mining and Web mining.

This book constitutes the thoroughly refereed post-conference proceedings of the 8th International Conference on Learning and Optimization, LION 8, which was held in Gainesville, FL, USA, in February 2014. The 33 contributions presented were carefully reviewed and selected for inclusion in this book. A large variety of topics are covered, such as algorithm configuration; multiobjective optimization; metaheuristics; graphs and networks; logistics and transportation; and biomedical applications.

Uncertainty is a concept associated with data acquisition and analysis, usually appearing in the form of noise or measure error, often due to some technological constraint. In supervised learning, uncertainty affects classification accuracy and yields low quality solutions. For this reason, it is essential to develop machine learning algorithms able to handle efficiently data with imprecision. In this paper we study this problem from a robust optimization perspective. We consider a supervised learning algorithm based on generalized eigenvalues and we provide a robust counterpart formulation and solution in case of ellipsoidal uncertainty sets. We demonstrate the performance of the proposed robust scheme on artificial and benchmark datasets from University of California Irvine (UCI) machine learning repository and we compare results against a robust implementation of Support Vector Machines.

This book constitutes the refereed proceedings of the 6th IAPR TC3 International Workshop on Artificial Neural Networks in Pattern Recognition, ANNPR 2014, held in Montreal, QC, Canada, in October 2014. The 24 revised full papers presented were carefully reviewed and selected from 37 submissions for inclusion in this volume. They cover a large range of topics in the field of learning algorithms and architectures and discussing the latest research, results, and ideas in these areas.

Support vector machines (SVM) is one of the well known supervised classes of learning algorithms. Basic SVM models are dealing with the situation where the exact values of the data points are known. This paper studies SVM when the data points are uncertain. With some properties known for the distributions, chance-constrained SVM is used to ensure the small probability of misclassification for the uncertain data. As infinite number of distributions could have the known properties, the robust chance-constrained SVM requires efficient transformations of the chance constraints to make the problem solvable. In this paper, robust chance-constrained SVM with second-order moment information is studied and we obtain equivalent semidefinite programming and second order cone programming reformulations. The geometric interpretation is presented and numerical experiments are conducted. Three types of estimation errors for mean and covariance information are studied in this paper and the corresponding formulations and techniques to handle these types of errors are presented.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.

Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.