Book
BirdNumbers 2016 Birds in a changing world. Programme and Abstracts. 20th Conference of the European Bird Census Council
Birds in a changing world
Avifauna of the Tver region (Russia): Its past and presen

Proceedings of the 12th Conference of the European Ornithologists' Union
Bird bones from Novgorod and sites in its immediate hinterland
Hindlimb morphology as one of keys in understanding of avian evolution
Bipedal hopping in birds and rodents: morphological and evolutionary aspects
New evidence of functional analogies and homologies of avian and mammalian brains is pre sented, as is a revised nomenclature of the most important brain structures. Comparative characteristics of the avian brain and criteria for its progressive development in the phylogeny have been considered. We studied the possibility to use Portmann’s index as one of the indicators of brain development in different avian spe cies. We substantiated the necessity to chose for investigation new sets of avian species with medium (Parus caeruleus and Loxia curvirostra) and low (Larus glaucescens) levels of brain complexity to maintain fully valu able grounds for comparing the cognitive abilities in birds. The main experimentally supported proofs of the existence of elementary thinking and some other cognitive functions in the higher birds have been reviewed. The high levels of cognitive processes that underlie the tool using ability in birds, as well as the similarity to those processes in apes, have been demonstrated from the results obtained in the first decade of the 21st cen tury. Comparative studies on protoinstrumental activity confirmed the ability of hooded crows and ravens to find urgent solution of toolusing tasks. Although birds with a medium level of brain complexity display seem ingly rational behavior, it is plausible that they use simpler rules being unable to understand the task logic. It was shown that birds of different orders with a high level of brain complexity demonstrate similar dynamics in the development of abstract concepts. Crossbills, which have a medium level of brain complexity, were able to develop the same concepts at a lower level than the corvids; whereas the seagulls and pigeons, which possess a low level of cognitive abilities, were not able to operate any abstractions and were incapable of solving other cognitive tests. The fact that corvids, parrots, and apes have similar abilities to solve some cognitive tasks sup ports the hypothesis of the convergent evolution of the brain and cognition in birds and primates.
One of the key advances in genome assembly that has led to a significant improvement in contig lengths has been improved algorithms for utilization of paired reads (mate-pairs). While in most assemblers, mate-pair information is used in a post-processing step, the recently proposed Paired de Bruijn Graph (PDBG) approach incorporates the mate-pair information directly in the assembly graph structure. However, the PDBG approach faces difficulties when the variation in the insert sizes is high. To address this problem, we first transform mate-pairs into edge-pair histograms that allow one to better estimate the distance between edges in the assembly graph that represent regions linked by multiple mate-pairs. Further, we combine the ideas of mate-pair transformation and PDBGs to construct new data structures for genome assembly: pathsets and pathset graphs.
Papers about natural protection territories
Many environmental stimuli present a quasi-rhythmic structure at different timescales that the brain needs to decompose and integrate. Cortical oscillations have been proposed as instruments of sensory de-multiplexing, i.e., the parallel processing of different frequency streams in sensory signals. Yet their causal role in such a process has never been demonstrated. Here, we used a neural microcircuit model to address whether coupled theta–gamma oscillations, as observed in human auditory cortex, could underpin the multiscale sensory analysis of speech. We show that, in continuous speech, theta oscillations can flexibly track the syllabic rhythm and temporally organize the phoneme-level response of gamma neurons into a code that enables syllable identification. The tracking of slow speech fluctuations by theta oscillations, and its coupling to gamma-spiking activity both appeared as critical features for accurate speech encoding. These results demonstrate that cortical oscillations can be a key instrument of speech de-multiplexing, parsing, and encoding.
Neuronal nicotinic acetylcholine receptors (NNRs) of the α7 subtype have been shown to contribute to the release of dopamine in the nucleus accumbens. The site of action and the underlying mechanism, however, are unclear. Here we applied a circuit modeling approach, supported by electrochemical in vivo recordings, to clarify this issue. Modeling revealed two potential mechanisms for the drop in accumbal dopamine efflux evoked by the selective α7 partial agonist TC-7020. TC-7020 could desensitize α7 NNRs located predominantly on dopamine neurons or glutamatergic afferents to them or, alternatively, activate α7 NNRs located on the glutamatergic afferents to GABAergic interneurons in the ventral tegmental area. Only the model based on desensitization, however, was able to explain the neutralizing effect of coapplied PNU-120596, a positive allosteric modulator. According to our results, the most likely sites of action are the preterminal α7 NNRs controlling glutamate release from cortical afferents to the nucleus accumbens. These findings offer a rationale for the further investigation of α7 NNR agonists as therapy for diseases associated with enhanced mesolimbic dopaminergic tone, such as schizophrenia and addiction