• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 10
Sort:
by name
by year
Article
Klucharev V., Munneke M., Smidts A. et al. Journal of Neuroscience. 2011. Vol. 31. No. 33. P. 11934-11940.

We often change our behavior to conform to real or imagined group pressure. Social influence on our behavior has been extensively studied in social psychology, but its neural mechanisms have remained largely unknown. Here we demonstrate that the transient downregulation of the posterior medial frontal cortex by theta-burst transcranial magnetic stimulation reduces conformity, as indicated by reduced conformal adjustments in line with group opinion. Both the extent and probability of conformal behavioral adjustments decreased significantly relative to a sham and a control stimulation over another brain area. The posterior part of the medial frontal cortex has previously been implicated in behavioral and attitudinal adjustments. Here, we provide the first interventional evidence of its critical role in social influence on human behavior.

Added: Jun 6, 2013
Article
Feurra M., Bianco G., Santarnecchi E. et al. Journal of Neuroscience. 2011. Vol. 31. No. 34. P. 12165-12170.

Different corticothalamic brain modules intrinsically oscillate at a "natural frequency" in a topographically organized manner. In "quiescent" human sensorimotor regions, the main detectable oscillatory activity peaks at approximately 20 Hz, and partly contributes to determine the state of corticospinal excitability. Here, we showed that the transcranial application of an imperceptible, short-lasting (90 s) electric field oscillating at a physiological range increases corticospinal excitability online, with well defined frequency dependence and regional specificity. Indeed, the size of motor evoked potentials (MEPs) induced by navigated single-pulse TMS over the motor cortex significantly increased only during the local application of transcranial alternating current stimulation (tACS) at 20 Hz (beta range). Other tACS frequencies (5, 10, and 40 Hz) applied on the motor cortex did not impact MEPs' size. Moreover, tACS applied on a control site (parietal cortex) and on a peripheral site (ulnar nerve) also failed to modulate MEPs. These results help clarifying the functional significance of the 20 Hz idling beta rhythm of sensorimotor regions and suggest potential clinical applications of this approach.

Added: Sep 13, 2015
Article
Mandelli M., Caverzasi E., Binney R. et al. Journal of Neuroscience. 2014. Vol. 34. No. 29. P. 9754-9767.

In primary progressive aphasia (PPA), speech and language difficulties are caused by neurodegeneration of specific brain networks. In the nonfluent/agrammatic variant (nfvPPA), motor speech and grammatical deficits are associated with atrophy in a left fronto-insular-striatal network previously implicated in speech production. In vivo dissection of the crossing white matter (WM) tracts within this “speech production network” is complex and has rarely been performed in health or in PPA. We hypothesized that damage to these tracts would be specific to nfvPPA and would correlate with differential aspects of the patients' fluency abilities. We prospectively studied 25 PPA and 21 healthy individuals who underwent extensive cognitive testing and 3 T MRI. Using residual bootstrap Q-ball probabilistic tractography on high angular resolution diffusion-weighted imaging (HARDI), we reconstructed pathways connecting posterior inferior frontal, inferior premotor, insula, supplementary motor area (SMA) complex, striatum, and standard ventral and dorsal language pathways. We extracted tract-specific diffusion tensor imaging (DTI) metrics to assess changes across PPA variants and perform brain–behavioral correlations. Significant WM changes in the left intrafrontal and frontostriatal pathways were found in nfvPPA, but not in the semantic or logopenic variants. Correlations between tract-specific DTI metrics with cognitive scores confirmed the specific involvement of this anterior–dorsal network in fluency and suggested a preferential role of a posterior premotor-SMA pathway in motor speech. This study shows that left WM pathways connecting the speech production network are selectively damaged in nfvPPA and suggests that different tracts within this system are involved in subcomponents of fluency. These findings emphasize the emerging role of diffusion imaging in the differential diagnosis of neurodegenerative diseases.

Added: Oct 9, 2015
Article
Colosio M., Shestakova A., Nikulin V. et al. Journal of Neuroscience. 2017. Vol. 37. No. 20. P. 5074-5083.

Cognitive dissonance theory suggests that our preferences are modulated by the mere act of choosing. A choice between two similarly valued alternatives creates psychological tension (cognitive dissonance) that is reduced by a post-decisional reevaluation of the alternatives. Our study demonstrates that choices associated with stronger cognitive dissonance trigger a larger negative fronto-central evoked response similar to error-related negativity (ERN), which has in turn been implicated in general performance monitoring. Furthermore, the amplitude of the evoked response is correlated with the reevaluation of the alternatives. We also found a link between individual neural dynamics (long-range temporal correlations-LRTC) of the fronto-central cortices during rest and follow-up neural and behavioral effects of cognitive dissonance. Individuals with stronger resting-state LRTC demonstrated a greater post-decisional reevaluation of the alternatives and larger evoked brain responses associated with stronger cognitive dissonance. Thus, our results suggest that cognitive dissonance is reflected in both resting-state and choice-related activity of the prefrontal cortex as part of the general performance-monitoring circuitry.

Added: Oct 20, 2016
Article
Buchin A., Chizov A., Huberfeld G. et al. Journal of Neuroscience. 2016. Vol. 36. No. 46. P. 11619-11633.

Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl− regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro. Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges.

Added: Dec 20, 2016
Article
Chennu S., Noreika V., Gueorguiev D. et al. Journal of Neuroscience. 2016. Vol. 36. No. 32. P. 8305-8316.

There is increasing evidence that human perception is realized by a hierarchy of neural processes in which predictions sent backward from higher levels result in prediction errors that are fed forward from lower levels, to update the current model of the environment. Moreover, the precision of prediction errors is thought to be modulated by attention. Much of this evidence comes from paradigms in which a stimulus differs from that predicted by the recent history of other stimuli (generating a so-called “mismatch response”). There is less evidence from situations where a prediction is not fulfilled by any sensory input (an “omission” response). This situation arguably provides a more direct measure of “top-down” predictions in the absence of confounding “bottom-up” input. We applied Dynamic Causal Modeling of evoked electromagnetic responses recorded by EEG andMEGto an auditory paradigm in which we factorially crossed the presence versus absence of “bottom-up” stimuli with the presence versus absence of “top-down” attention. Model comparison revealed that both mismatch and omission responses were mediated by increased forward and backward connections, differing primarily in the driving input. In both responses, modeling results suggested that the presence of attention selectively modulated backward “prediction” connections. Our results provide new model-driven evidence of the pure top-down prediction signal posited in theories of hierarchical perception, and highlight the role of attentional precision in strengthening this prediction.

Added: Oct 6, 2016
Article
Iemi L., Chaumon M., Crouzet S. M. et al. Journal of Neuroscience. 2017. Vol. 37. No. 4. P. 807-819.

Spontaneous fluctuations of brain activity explain why a faint sensory stimulus is sometimes perceived and sometimes not. The prevailing view is that heightened neural excitability, indexed by decreased α oscillations, promotes better perceptual performance. Here, we provide evidence that heightened neural excitability instead reflects a state of biased perception, during which a person is more likely to see a stimulus, whether or not it is actually present. Therefore, we propose that changes in neural excitability leave the precision of sensory processing unaffected. These results establish the link between spontaneous brain activity and the variability in human perception.

Added: Sep 4, 2017
Article
Feurra M., Pasqualetti P., Bianco G. et al. Journal of Neuroscience. 2013. Vol. 33. No. 44. P. 17483-17489.

Imperceptible transcranial alternating current stimulation (tACS) changes the endogenous cortical oscillatory activity in a frequency-specific manner. In the human motor system, tACS coincident with the idling beta rhythm of the quiescent motor cortex increased the corticospinal output. We reasoned that changing the initial state of the brain (i.e., from quiescence to a motor imagery task that desynchronizes the local beta rhythm) might also change the susceptibility of the corticospinal system to resonance effects induced by beta-tACS. We tested this hypothesis by delivering tACS at different frequencies (theta, alpha, beta, and gamma) on the primary motor cortex at rest and during motor imagery. Motor-evoked potentials (MEPs) were obtained by transcranial magnetic stimulation (TMS) on the primary motor cortex with an online-navigated TMS-tACS setting. During motor imagery, the increase of corticospinal excitability was maximal with theta-tACS, likely reflecting a reinforcement of working memory processes required to mentally process and "execute" the cognitive task. As expected, the maximal MEPs increase with subjects at rest was instead obtained with beta-tACS, substantiating previous evidence. This dissociation provides new evidence of state and frequency dependency of tACS effects on the motor system and helps discern the functional role of different oscillatory frequencies of this brain region. These findings may be relevant for rehabilitative neuromodulatory interventions

Added: Sep 13, 2015
Article
Chrabaszcz A., Neumann W., Stretcu O. et al. Journal of Neuroscience. 2019. Vol. 39. No. 14. P. 2698-2708.

The sensorimotor cortex is somatotopically organized to represent the vocal tract articulators, such as lips, tongue, larynx, and jaw. How speech and articulatory features are encoded at the subcortical level, however, remains largely unknown. We analyzed local field potential (LFP) recordings from the subthalamic nucleus (STN) and simultaneous electrocorticography recordings from the sensorimotor cortex of 11 human subjects (1 female) with Parkinson’s disease during implantation of deep brain stimulation (DBS) electrodes, while they read aloud three-phoneme words. The initial phonemes involved either articulation primarily with the tongue (coronal consonants) or the lips (labial consonants). We observed significant increases in high gamma (60–150 Hz) power in both the STN and the sensorimotor cortex that began before speech onset and persisted for the duration of speech articulation. As expected from previous reports, in the sensorimotor cortex, the primary articulators involved in the production of the initial consonants were topographically represented by high gamma activity. We found that STN high gamma activity also demonstrated specificity for the primary articulator, although no clear topography was observed. In general, subthalamic high gamma activity varied along the ventral-dorsal trajectory of the electrodes, with greater high gamma power recorded in the dorsal locations of the STN. Interestingly, the majority of significant articulator-discriminative activity in the STN occurred prior to that in sensorimotor cortex. These results demonstrate that articulator-specific speech information is contained within high gamma activity of the STN, but with different spatial and temporal organization compared to similar information encoded in the sensorimotor cortex.

Added: Mar 17, 2019