• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 4
Sort:
by name
by year
Article
Vorontsov K. V., Potapenko A. Machine Learning. 2015. Vol. 101. No. 1. P. 303-323.

Probabilistic topic modeling of text collections has been recently developed mainly within the framework of graphical models and Bayesian inference. In this paper we introduce an alternative semi-probabilistic approach, which we call additive regularization of topic models (ARTM). Instead of building a purely probabilistic generative model of text we regularize an ill-posed problem of stochastic matrix factorization by maximizing a weighted sum of the log-likelihood and additional criteria. This approach enables us to combine probabilistic assumptions with linguistic and problem-specific requirements in a single multi-objective topic model. In the theoretical part of the work we derive the regularized EM-algorithm and provide a pool of regularizers, which can be applied together in any combination. We show that many models previously developed within Bayesian framework can be inferred easier within ARTM and in some cases generalized. In the experimental part we show that a combination of sparsing, smoothing, and decorrelation improves several quality measures at once with almost no loss of the likelihood.

Added: Feb 19, 2015
Article
Pampapathi R., Levene M., Mirkin B. Machine Learning. 2006. Vol. 65. P. 309-338.
Added: Aug 27, 2009
Article
Mirkin B. Machine Learning. 1999. No. 35(1).
Added: Oct 29, 2010
Article
Ignatov D. I., Gnatyshak D. V., Sergei O. Kuznetsov et al. Machine Learning. 2015. Vol. 101. No. 1. P. 271-302.

This paper presents several definitions of “optimal patterns” in triadic data and results of experimental comparison of five triclustering algorithms on real-world and synthetic datasets. The evaluation is carried over such criteria as resource efficiency, noise tolerance and quality scores involving cardinality, density, coverage, and diversity of the patterns. An ideal triadic pattern is a totally dense maximal cuboid (formal triconcept). Relaxations of this notion under consideration are: OAC-triclusters; triclusters optimal with respect to the least-square criterion; and graph partitions obtained by using spectral clustering. We show that searching for an optimal tricluster cover is an NP-complete problem, whereas determining the number of such covers is #P-complete. Our extensive computational experiments lead us to a clear strategy for choosing a solution at a given dataset guided by the principle of Pareto-optimality according to the proposed criteria.

Added: Apr 15, 2015