• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 59
Sort:
by name
by year
Article
Grinin L. E., Grinin A., Korotayev A. Technological Forecasting and Social Change. 2020. Vol. 155. P. 119955.

The authors quantitatively analyse the long-term dynamics of technological progress from 40,000 BCE and offer projections through the 22nd century. We provide one method to measure technological progress over that time period, using a simple hyperbolic equation, yt = C/(t0 – t), as our model. We define yt as the technological growth rate, measured as number of technological phase transitions per unit of time. Our method measures the worldwide technology dynamic growth with an accuracy of R2 = 0.99. We find the singularity date occurs in the early 21st century and expect a new powerful acceleration of technological development after the 2030s followed by a slow-down in the late 21st and early 22nd centuries. The authors discuss the role of global ageing as one of the main factors in both the technological acceleration and the subsequent deceleration.

Added: Mar 6, 2020
Article
Del Giudice M., Garcia-Perez A., Scuotto V. et al. Technological Forecasting and Social Change. 2019. Vol. 148. No. November 2019, article 119704. P. 1-7.

Technological innovation is the new backbone for companies. Exploiting and exploring new knowledge increase the chance of survival in the current dynamic market. Alongside, there are countries were be an innovative need to face up social and political challenges. This has transformed their economy, spreading an entrepreneurial mindset mingled with the willing to help a local community. This phenomenon is called social entrepreneurship which is leveraging new economies and building wealth, environmental system. In this vein, the present research seeks to offer qualitative research on 142 social entrepreneurs in an emerging country. The scope is to analyse if social entrepreneurship, entrepreneurial characteristics, and entrepreneurial ecosystem influence innovation. As emerged, technological innovation is affected by the first two factors but the entrepreneurial ecosystem is still not supportive. New, several activities should be organised by the government to assist entrepreneurs, whereas, the entrepreneurs are socially motivated to build up his enterprise.

Added: Dec 9, 2019
Article
Dranev Yu., Chulok A. Technological Forecasting and Social Change. 2015. Vol. 101. P. 320-327.

We present a new approach to technology road mapping (TR) which allows one to assess interactions of technologies and markets. Unlike the traditional methodology of TR that mostly relies on qualitative techniques, the proposed approach combines qualitative and quantitative methods. This bottom-up economic model allows the aggregation of estimates on different levels from the product group to industry used to quantify the market development. The KLEMS (capital, labor, energy, materials and services) production factors and multifactor productivity embedded in the model play the role of parameters measuring interactions between market outputs and technology innovation according to market-pull and technology-push effects. The qualitative methods include: STEEPV trend identification, 2 × 2 scenario analysis, and expert procedures. This allows for decreasing the number of parameters, inputs and calculations in the economic model. At the same time, balance between qualitative and quantitative techniques provide more realistic estimates for technological and market parameters. The assessment of interactions between technologies and markets is illustrated using the case of civil aircraft manufacturing in Russia. Technology impact is measured in terms of output growth of the industry.

Added: Oct 12, 2015
Article
Gershman M., Gokhberg L., Kuznetsova T. et al. Technological Forecasting and Social Change. 2018. No. 133. P. 132-140.

This paper analyzes the numerous governments' attempts to build a bridge between science and innovation, starting from the times of the Russian Empire up to the present day. We argue that throughout the whole history of Russian science, the government, being the main driver of scientific development, has largely failed to organize knowledge transfers and incentivize companies to innovate. The empirical evidence shows that nowadays only a very small share of Russian manufacturing enterprises considers R&D cooperation with knowledge producers important and only this small minority benefits from the government's science, technology and innovation (STI) policies. The reasons behind this remain an underdeveloped institutional setting and a lack of market competition.

Added: Apr 13, 2018
Article
Burmaoglu S., Saritas O. Technological Forecasting and Social Change. 2017. Vol. 116. No. March . P. 151-161.

Wars have been a part of humanity since prehistoric times, and are expected to remain an important component of future human societies. Since the beginning of the history wars have evolved in parallel with the changes in Society, Technology, Economy, Environment, Politics and Values (STEEPV). The changing circumstances unavoidably affect the characteristics of warfare through its motivations, shape and size. Armies have adapted themselves to these changing characteristics of warfare through Revolutions in Military Affairs (RMAs) by introducing new military concepts and technologies. Based on the overview of the evolution of military technologies and concepts as a response to changing conditions, the aim of the present study is to anticipate what and how future technologies and concepts will shape warfare and drive impending RMAs. To answer this question, first the RMA literature is reviewed within a broader historical context to understand the extent to which military concepts and technologies affected the RMAs. Then, a time-based technological trend analysis is conducted through the analysis of military patents to understand the impact of technological developments on military concepts. Following the historical analyses, two scenarios are developed for the future of military R&D based on ‘concept-driven’ and ‘technology-driven’ factors. The article is concluded with a discussion about the implications of future scenarios for military R&D, and likely RMAs through the changes of concepts and technologies, and possible consequences such as transformations in organizational structures of armies, new skill and capacity requirements, military education systems, and decision-making processes.

Added: Apr 7, 2017
Article
Carayannis E., Goletsis Y., Grigoroudis E. Technological Forecasting and Social Change. 2018. Vol. 131. P. 4-17.

Innovation is a complex, dynamic, socio-technical, socio-economic and socio-political phenomenon which needs to be approached in a holistic manner to be properly measured and assessed. In this paper, we revisit the national and regional Innovation Scoreboards using a multiple criteria decision analysis (MCDA) approach in the context of the Quadruple Innovation Helix (QIH) framework. We deploy an MCDA approach combining AHP and TOPSIS methods which merges data from Government, University, Industry, and Civil Society sectors (the four QIH actors or helices) and overcomes limitations of the existing Innovation Scoreboard approach by incorporating the different preference systems of the QIH Helix actors. The findings illustrate the power and promise of our approach as an alternative composite innovation metric. Estimating the different preferences of innovation stakeholders gives the ability to develop policies and practices oriented towards specific QIH actors. Estimating the importance that each QIH actor assigns to different innovation aspects is critical policy-wise and practice-wise as it provides a perspective on relative efficacies and potential ways and means to calculate differential efficacies for alternative configurations of resource allocations. These results underlie specific policies, practices, and priorities therein based on the relative re-distribution of weights.

Added: Feb 6, 2019
Article
Feige D., Vonortas N. Technological Forecasting and Social Change. 2017. Vol. 119. P. 219-226.

Technology foresight has been increasingly undertaken by developing countries to identify technologies whose adoption might serve as a platform for future economic growth. However, foresight activities have not, by and large, resulted in well-developed policy initiatives. Three factors are relevant for improvement. First, foresight activities would benefit from being more informed by the convergence literature and global convergence experience over the past several decades, and should therefore incorporate organically the concepts of absorptive capacity and technology gap into foresight exercises. Second, certain preconditions – in particular the existence of a functional national innovation system – enhance the likelihood that foresight exercises will be successful. Third, in order to achieve wide buy-in and promote the sustainability of initiatives generated by the foresight activity, developing countries are advised to consult widely in the foresight process. Policies emanating from foresight activities should additionally address two core challenges: a) a clear definition of those technologies that should be developed internally vs. those that should be sourced from abroad and b) identification of the internal capabilities to be developed in conjunction with those technologies targeted for acquisition from abroad.

Added: Sep 25, 2016
Article
Ivanova I., Strand Ø., Kushnir D. et al. Technological Forecasting and Social Change. 2017. Vol. 120. P. 77-89.

The Economic Complexity Index (ECI; Hidalgo & Hausmann, 2009) measures the complexity of national economies in terms of product groups. Analogously to ECI, a Patent Complexity Index (PatCI) can be developed on the basis of a matrix of nations versus patent classes. Using linear algebra, the three dimensions—countries, product groups, and patent classes—can be combined into a measure of “Triple Helix” complexity (THCI) including the trilateral interaction terms between knowledge production, wealth generation, and (national) control. THCI can be expected to capture the extent of systems integration between the global dynamics of markets (ECI) and technologies (PatCI) in each national system of innovation. We measure ECI, PatCI, and THCI during the period 2000-2014 for the 34 OECD member states, the BRICS countries, and a group of emerging and affiliated economies (Argentina, Hong Kong, Indonesia, Malaysia, Romania, and Singapore). The three complexity indicators are correlated between themselves; but the correlations with GDP per capita are virtually absent. Of the world’s major economies, Japan scores highest on all three indicators, while China has been increasingly successful in combining economic and technological complexity. We could not reproduce the correlation between ECI and average income that has been central to the argument about the fruitfulness of the economic complexity approach.

Added: Feb 28, 2017
Article
Glyptis L., Christofi M., Vrontis D. et al. Technological Forecasting and Social Change. 2020. Vol. 152. No. article 119880. P. 1-11.

E-Government is a global trend with far-reaching benefits if implemented in the optimal way. All nations, irrespective of whether they are considered developed or developing economies, invest in the development of strategies furthering their e-government agenda. While e-government has attracted extensive interest for over a decade, leading to a maturing field, small European Union (EU) members have some particularities that must be taken into account. This research focuses on the critical success factors of e-government adoption, using the Republic of Cyprus as a case study. These findings show that the financial position of a nation and its e-readiness level, as well as the infrastructure facilities and technological innovations for effective knowledge management and communication, political and legal frameworks, are key factors that influence the level of e-government adoption. Furthermore, organizational and institutional aspects, as well as the socio-cultural characteristics, should not be underestimated, as these factors are crucial barriers to e-government adoption. Finally, the specific country's environmental cognition and consciousness is found to be more influential in this case than what literature on other cases suggest.

Added: Jun 29, 2020
Article
Proskuryakova L. N. Technological Forecasting and Social Change. 2017. Vol. 119. P. 205-210.

This paper offers a novel comprehensive conceptualization of Energy Technology Foresight (ETF) in emerging economies, including development trajectories, key methodological tools and elements, major challenges and weaknesses. ETF allows the emerging economies to provide the basis for government's energy policy, to create a common vision among the various actors and to strengthen R&D and innovation basis in the energy sector.

The author presents five basic premises to conceptualize the ETF approach in emerging economies: the need to take into account higher risks and uncertainties; integration of foresight outcomes in national and corporate strategic planning; constant revision of ETF methodology; dominance of economic, technological and security considerations; and the inability to catch-up with the energy technology development of the world leaders. Three case-studies (Russia, Brazil and China) of ETF in emerging markets are presented to illustrate and substantiate the conceptual approach.

The paper is of interest for researchers that are involved in future studies, as well as decision-makers, who commission such studies and use their outcomes to advance the policy processes and documents.

Added: Jun 20, 2016
Article
Fischer B. B., Rücker Schaeffer P., Vonortas N. Technological Forecasting and Social Change. 2019. Vol. 145. P. 330-340.

Due to its ability to create and disseminate knowledge, the modern university is understood as a central agent in innovation systems and technology upgrading dynamics. The main objective of this article is to assess the evolution of universities' embeddedness within the innovation system of an emerging economy in terms of patenting activity and linkages to industry. The study is based on information relating to the twelve most eminent universities in Brazil for the years 1994, 2004 and 2014. These institutions are found responsible for a substantial share of Brazilian patents – with an upward trend over the years - and these institutions have demonstrated a progressive embeddedness to the national innovation system. Such behavior seems to have co-evolved along with improvements in the national institutional environment, leading to expectations that academia can become strategic in shaping the catching-up conditions in Brazil for the coming years. However, deeper connections with both domestic and foreign agents and multinational corporations are needed in order to accelerate the pace of university contribution to value chains and technology upgrading.

Added: Sep 27, 2018
Article
Radosevic S., Meissner D., Lacasa I. D. et al. Technological Forecasting and Social Change. 2019. Vol. 145. P. 254-257.

.

Added: Sep 4, 2019
Article
Gonçalves Pereira C., Lavoie J. R., Garces E. et al. Technological Forecasting and Social Change. 2019. Vol. 139. P. 185-199.

Therapeutic monoclonal antibodies (mAbs) market is strongly contributing to the rising growth of the biotechnology industry. Despite the increasing number of inventions over time, a few therapeutic mAbs are currently marketed. This paper focuses on developing an emerging score to select/rank promising therapeutic mAbs patents, based on a hierarchical decision model using expert's opinion. Six attributes related to each factor concerning patent status, patent owner's profile and mAbs medical relevance were analyzed. The desirability levels of each attribute were also assessed. Our data shows the medical relevance factor as the most important, contributing 50% of the emerging score. Among the attributes, the most important under patent status was proper geographic coverage and wider patent scope; for organization's profile was the preexistence of approved drugs; and for medical relevance, the clinical phase performance. A group of 1053 patents related to therapeutic mAb were scored, and the most promising were concerning combination therapy using immune checkpoint inhibitors. The study has managerial implications related to patent portfolio management and patent valuation, and provides instructions to rank mAbs patents according to the emerging score defined by attribute's importance in order to improve the identification of future innovations pathways.

Added: Oct 1, 2019
Article
Li X., Xie Q., Daim T. et al. Technological Forecasting and Social Change. 2019. Vol. 146. P. 432-449.

How to detect and identify the future trends of emerging technologies as early as possible is crucial for government R&D strategic planning and enterprises' practices. To avoid the weakness of using only scientific papers or patents to study the development trends of emerging technologies, this paper proposes a framework that uses scientific papers and patents as data resources and integrates the text mining and expert judgment approaches to identify technology evolution paths and forecast technology development trends within the short term. The perovskite solar cell technology is selected as a case study. In this case, the text mining and expert judgment methods are applied to analyze the technology evolution path, and gaps analysis between science and technology is used to forecast the technology development trend. This paper will contribute to the technology forecasting and foresight methodology, and will be of interest to solar photovoltaic technology R&D experts.

Added: Oct 1, 2019
Article
Grinin L. E., Korotayev A., Grinin A. L. Technological Forecasting and Social Change. 2017. Vol. 115. P. 52-68.

In the present article we analyze the relationships between K-waves and major technological breakthroughs in history and offer forecasts about features of the sixth Kondratieff wave. We use for our analysis the basic ideas of long cycles' theory and related theories (theories of the leading sector, technological styles etc.) as well as the ideas of our own theory of production principles and production revolutions. The latest of production revolution is the Cybernetic Revolution that, from our point of view, started in the 1950s. We assume that in the 2030s and 2040s the sixth K-wave will merge with the final phase of the Cybernetic Revolution (which we call a phase of self-regulating systems). This period will be characterized by the breakthrough inmedical technologies which will be capable to combine many other technologies into a single system of MANBRIC-technologies (medico-additive-nano-bio-roboto-info-cognitive technologies). The article also presents a forecast of the process of global ageing and argueswhy the technological breakthrough will occur in health care sector and connected spheres.

Added: Nov 30, 2016
Article
Abankina I., Aleskerov F. T., Belousova V. et al. Technological Forecasting and Social Change. 2016. No. 103. P. 228-239.

Over the last few decades, performance-based funding models of universities have been introduced and have made universities build and implement different strategies to enable them to compete and be viable in changing circumstances. In turn, national governments are focused on providing universities with more opportunities to run efficient programmes that advance higher education. This paper includes a detailed review of various taxonomies for structuring university. More importantly, it develops a typology of higher education institutions that is relevant for the Russian context. The Ward method is used to cluster universities on the basis of university distinctions in terms of the availability of resources, education, and research and development. This typology of universities is verified by assessing their efficiency score gained from modified Data Envelopment Analysis,incorporating universities' heterogeneity. Finally, the paper gives a decision tree for classifying universities bearing in mind their diversity. It might be expanded for abroader set of inputs and outputs, namely external projectbased research funding modes and cooperation between universities and industry to pursue the development of innovation. The results can be used for shaping targeted policies aimed at particular university groups

Added: Oct 14, 2015
Article
Haegeman K., Spiesberger M., Veselitskaya N. et al. Technological Forecasting and Social Change. 2015. Vol. 101. P. 200-215.

This paper addresses the issue of priority setting for research programming in a multi-layered and multilateral context, taking into account the interests of diverse stakeholder groups. It proposes a framework for reducing complexity in a context where societal challenges are multifaceted and largely interconnected, decisions on research programming are highly fragmented and stakeholders are extremely diverse. The framework includes methodological recommendations for thematic priority setting through the application of Future-oriented Technology Analysis (FTA). Also the importance of achieving clear policy impacts (see Johnston and Cagnin, 2011) is addressed by including principles for optimising this impact. We use the case of an ERA-NET project supported under the EU’s FP7 programme, the ERA.Net RUS, which aims at coordinating R&D and innovation policies and support programmes between EU Member States, countries associated to the 7th Framework Programme (FP7) and Russia. A combination of foresight methodologies such as expert workshops, a Delphi survey, roadmapping elements, and prioritisation techniques were applied to select relevant topics for a research call. The paper highlights how foresight embedded in a multilateral programme cooperation project can support priority setting and how the foresight design can be adapted according to a set of coordination dimensions and design principles. Furthermore lessons will be drawn in order to achieve direct impacts, not only on the programming of calls for research projects addressing grand societal challenges (e.g. climate change, major diseases, demography and migration, etc.) between a wide range of countries and regions belonging to different parts of the world, but also on the EU level policy agenda and on the long-term strategic collaboration between world regions. Strategies for communicating foresight results to relevant policy makers at EU and national levels (e.g. in Russia) and for achieving impact herewith are also outlined.

Added: Oct 24, 2013
Article
Saritas O., Burmaoglu S. Technological Forecasting and Social Change. 2016. Vol. 102. P. 331-343.

Due to limited energy sources and growing concerns about environment, secure, safe and sustainable energy has become one of the Grand Challenges at the global level. Likewise in many other aspects of life, energy is crucial for military forces. In parallel to the changing nature of warfare, the need for energy in military operations has increased dramatically. While energy consumption in the World War II was 1 gal per soldier per day, it was 4 gal per soldier per day during the Desert Storm operation in 1991. Not only the quantity, but also the type of energy required for military operations has changed dramatically. Shifts have been observed from individual man power to machines powered by fuel and electricity. Energy demand and type have changed further through the introduction of more sophisticated devices with new capabilities such as to enable night vision, designate targets with lasers, provide advanced sensing and communication capabilities and reduce human involvement in operations through drones and robotic technologies. Investigating the trends in changing nature of warfare and energy through review, technology mining and scientometrics, the present study develops future scenarios, and a strategic roadmap to identify priority technology areas and strategies for the future military energy R&D.

Added: Sep 23, 2016
Article
Cagnin C., Havas A., Saritas O. Technological Forecasting and Social Change. 2013. Vol. 80. No. 3. P. 379-385.

This paper reflects on the potential of future-oriented analysis (FTA) to address major change and to support decision-makers and other stakeholders in anticipating and dealing with transformations. It does so by critically reflecting on the selected papers for this special issue as well as on the discussions that took place at the fourth Seville International Conference on Future-oriented Technology Analysis. Considering the potential roles of FTA in enabling a better understanding of complex situations and in defining effective policy responses leads to the understanding that appropriate FTA practices are needed to enable FTA to fulfil such roles. Dealing with disruptive changes - and grand challenges in particular -, therefore, raises several conceptual, methodological and operational issues. Two of them are general, while further two are specific to the so-called grand challenges: i) distinguish known unknowns, unknown knows and unknown unknowns, ii) combine quantitative and qualitative approaches in a relevant and feasible way, iii) understand the complex and systemic nature of grand challenges, and iv) orchestrate joint responses to grand challenges. After a brief explanation of these issues, the paper outlines the main ideas of the papers published in this special issue. These present various methodological aspects of FTA approaches as well as some advances needed in practice to assist FTA practitioners and stakeholders in comprehending transformations and in tackling the so-called grand challenges.

Added: Feb 7, 2013
Article
Kumar Singh S., Del Giudice M., Chierici R. et al. Technological Forecasting and Social Change. 2020. Vol. 150. No. article 119762. P. 1-12.

Drawing upon the resource-based view and the ability-motivation-opportunity theory, we examined how green human resource management interplays on to the linkages amongst green transformational leadership, green innovation and environmental performance. Using a survey questionnaire, we collected triadic data from 309 manufacturing sector small and medium-sized enterprises (SMEs). We used covariance-based structural equation modeling (SEM) to examine hypotheses in this study. Results of the study suggest that green HRM practices mediates the influence of green transformational leadership on green innovation. We also found that green HRM indirectly through green innovation influences firm's environmental performance. Overall, the findings of our study support all hypotheses of direct and indirect effects and have several theoretical and practical implications. Finally, our study significantly advances theory and suggests that HRM-performance relationship neither depends upon the additive effect of green transformational leadership and green innovation as antecedent and mediator, respectively, nor on their interactive effect but a mix of both combinational forms (ie., additive and interactive) to affect firm environmental performance. Overall, our study contributes and advances the previous studies wherein in leadership plays critical role to influence the HRM practices and that in turn to predict green innovation in the organization.

Added: Jan 24, 2020
Article
Vishnevskiy K., Karasev O., Meissner D. Technological Forecasting and Social Change. 2015. Vol. 90. P. 433-443.

The article elaborates an approach of combining Foresight and integrated roadmapping for corporate innovation management. The proposed management instrument goes beyond the existing roadmapping and corporate Foresight approaches by integrating them and showing the interface to corporate strategy building. Corporate Foresight and integrated roadmaps are closely interlinked and show reasonable potential to maintain the current level of organizational innovation culture and also enable future improvements.We propose a new roadmap structure and reveal the main ways to use this technique in business planning. Finally, the paper applies the suggested approach through case studies of major Russian companies in the oil & gas, energy, and aviation sectors.

Added: Jun 1, 2014