• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 4
Sort:
by name
by year
Article
Schein L. B., Tyutnev A. Journal of Physical Chemistry. 2011. Vol. 115. No. 14. P. 6939-6947.
The correlated disorder model (CDM) has been proposed as a theory of charge transport in molecularly doped polymers (MDPs). Recently a test of the CDM was proposed: it was predicted that the dipolar disorder energy can be obtained from the slope of the log of the mobility versus square root of the electric field (the Poole-Frenkel or PF slope). We find that the dipolar disorder energy obtained from the experimental PF slopes are almost always larger than the theoretical predictions, especially for MDPs made from dopants with low dipole moments. In addition, the theory relates the dipolar disorder energy to the temperature T0 at which the electric field dependence of the mobility vanishes. We find that the observed T0 does appear to increase as the dipolar disorder increases but is in quantitative agreement (within 25 K) with the theoretical predictions for only a limited set of the measurements. We conclude that it appears that the CDM needs further development to be consistent with charge transport in organic materials.
Added: Apr 12, 2012
Article
Weiss D. S., Andrey P. Tyutnev, Evgenii D. Pozhidaev. Journal of Physical Chemistry. 2015. Vol. 119. No. 3. P. 5334-5340.

ABSTRACT: The time-of-flight (TOF) transients of solution-cast, free-standing films of N,N′-diphenyl-N,N-bis(3-methylphenyl)-[1,1′-biphenyl]-4,4′diamine (TPD) in bisphenol A polycarbonate (PC) have been studied using electron gun induced charge generation. This molecularly doped polymer (MDP) has been shown to exhibit perfectly flat plateaus on its time-of-flight curves with optical excitation. Our TOF results with continuously changing electron energies, as well as numerical calculations using a multiple trapping model with a Gaussian trap distribution (MTMg), suggest that charge carrier transport in this molecularly doped polymer is nonequilibrium and the flat plateaus can be explained by the presence of a thin surface layer depleted of transport material. The depleted surface layers on samples of this molecularly doped polymer are extremely thin (less than 0.12 μm), with those relating to the release side (contacting a substrate during coating/drying procedure) being much smaller than for the free side exposed to air. Since TPD-doped PC and a tetraphenylbenzidine polymer containing the TPD moiety in its main chain served as the prototype materials for the concept of “trap-free” carrier transport, we have also discussed this in detail.

Added: May 24, 2015
Article
Tyutnev A. P., Weiss D. S., Dunlap D. H. et al. Journal of Physical Chemistry. 2014. Vol. 118. P. 5150-5158.

ABSTRACT: The time-of-flight (TOF) current transients from solution-cast, free-standing films of p-diethylaminobenzaldehyde diphenyhydrazone in bisphenol A polycarbonate (DEH:PC) have been studied using electron gun induced charge generation. Changes in the shape of the current transient, cusp formation in particular, with film thickness, electron-beam penetration depth, and the side of the sample irradiated, have been analyzed with a two-layer multiple trapping model, and indicate that the time-of-flight transients of solution-cast films can be problematic in that plateau formation does not necessarily imply nondispersive charge transport. The results are consistent with the existence of thin surface layers which are depleted of the hole transport material. The depleted layer on the surface of the film that was exposed to air during coating/drying is always thicker than it is for the surface contacting the substrate. Depletion could occur through transport material sublimation, surface physical characteristics such as porosity, inhomogeneous solvent evaporation, or some other mechanism.

Added: Jun 5, 2014
Article
Dunlap D. H., Schein L. B., Tyutnev A. et al. Journal of Physical Chemistry. 2010. Vol. 114. No. 19. P. 9076-9088.

The mechanism of charge transport in molecularly doped polymers has been the subject of much discussion over the years. In this paper, data obtained from a new experimental variant of the time-of-flight (TOF) technique, called TOF1a, are compared to the predictions of a two-layer multiple trapping model (MTM) with an exponential distribution of traps. In the recently introduced TOF1a experimental variant, the charge generation depth is varied continuously, from surface generation to bulk generation, by varying the energy of the electron-beam excitation source. This produces systematic changes in the shape of the current transient that can be compared to predictions of the two-layer MTM. In the model, one additional assumption is added to the homogeneous MTM, namely: that there exists a surface region, on the order of a micrometer thick, in which the trap distribution is identical to the bulk, but has a higher trap concentration. We find that the characteristic experimental features of an initial spike, a flat plateau, and an anomalously broad tail, as well as the sometimes observed cusp or decreasing current occurring near the transit time, can all be described by such a two-layer model; that is, they can arise as a result of carriers delayed by a trap-rich surface layer. We find that we can semiquantitatively fit current transient data over the whole time range of the experiment, but only by using theoretical parameters that lie in a narrow range, the extent of which we quantify here.

Added: Apr 12, 2012