• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 2
Sort:
by name
by year
Article
Protasov V. Y., Cicone A., Guglielmi N. Nonlinear Analysis: Hybrid Systems. 2018. Vol. 29. P. 165-186.

We consider linear dynamical systems with a structure of a multigraph. The vertices are associated to linear spaces and the edges correspond to linear maps between those spaces. We analyse the asymptotic growth of trajectories (associated to paths along the multigraph), the stability and the stabilizability problems. This generalizes the classical linear switching systems and their recent extensions to Markovian systems, to systems generated by regular languages, etc. We show that an arbitrary system can be factorized into several irreducible systems on strongly connected multigraphs. For the latter systems, we prove the existence of invariant (Barabanov) multinorm and derive a method for its construction. The method works for a vast majority of systems and finds the joint spectral radius (Lyapunov exponent). Numerical examples are presented and applications to the study of fractals, attractors, and multistep methods for ODEs are discussed.

Added: Sep 5, 2018
Article
Protasov V. Y., Jungers R. Nonlinear Analysis: Hybrid Systems. 2015. Vol. 17. P. 81-93.

We analyze the so-called Marginal Instability of linear switching systems, both in continuous and discrete time. This is a phenomenon of unboundedness of trajectories when the Lyapunov exponent is zero. We disprove two recent conjectures of Chitour, Mason and Sigalotti (2012) stating that for generic systems, the resonance is sufficient for marginal instability and for polynomial growth of the trajectories. The concept of resonance originated with the same authors is modified. A characterization of marginal instability under some mild assumptions on the system is provided. These assumptions can be verified algorithmically and are believed to be generic. Finally, we analyze possible types of fastest asymptotic growth of trajectories. An example of a marginally unstable pair of matrices with non-polynomial growth is given.

Added: Feb 19, 2016