• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 4
Sort:
by name
by year
Article
Gromov V., Migrina A. M. Complexity. 2017. Vol. 2017. No. Article ID 9212538. P. 1-7.

A natural language (represented by texts generated by native speakers) is considered as a complex system, and the type thereof to which natural languages belong is ascertained. Namely, the authors hypothesize that a language is a self-organized critical system and that the texts of a language are “avalanches” flowing down its word cooccurrence graph. The respective statistical characteristics for distributions of the number of words in the texts of English and Russian languages are calculated; the samples were constructed on the basis of corpora of literary texts and of a set of social media messages (as a substitution to the oral speech). The analysis found that the number of words in the texts obeys power-law distribution.

Added: Sep 27, 2018
Article
Dmitriev A., Kornilov V., Maltseva S. V. Complexity. 2018. Vol. 2018. No. Article ID 4732491. P. 1-11.

Recent developments in nonlinear science have caused the formation of a new paradigm called the paradigm of complexity. The self-organized criticality theory constitutes the foundation of this paradigm. To estimate the complexity of a microblogging social network, we used one of the conceptual schemes of the paradigm, namely, the system of key signs of complexity of the external manifestations of the system irrespective of its internal structure. Our research revealed all the key signs of complexity of the time series of a number of microposts. We offer a new model of a microblogging social network as a nonlinear random dynamical system with additive noise in three-dimensional phase space. Implementations of this model in the adiabatic approximation possess all the key signs of complexity, making the model a reasonable evolutionary model for a microblogging social network. The use of adiabatic approximation allows us to model a microblogging social network as a nonlinear random dynamical system with multiplicative noise with the power-law in one-dimensional phase space.

Added: Nov 24, 2018
Article
Dmitriev A., Dmitriev V., Balybin S. Complexity. 2019. Vol. 2019. No. Article ID 8750643. P. 1-16.

Recently, there has been an increasing number of empirical evidence supporting the hypothesis that spread of avalanches of microposts on social networks, such as Twitter, is associated with some sociopolitical events. Typical examples of such events are political elections and protest movements. Inspired by this phenomenon, we built a phenomenological model that describes Twitter’s self-organization in a critical state. An external manifestation of this condition is the spread of avalanches of microposts on the network.  e model is based on a fractional three-parameter self-organization scheme with stochastic sources. It is shown that the adiabatic mode of self-organization in a critical state is determined by the intensive coordinated action of a relatively small number of network users. To identify the critical states of the network and to verify the model, we have proposed a spectrum of three scaling indicators of the observed time series of microposts.

Added: Jan 22, 2020
Article
Paul E., Pogudin G., Qin W. et al. Complexity. 2020. Vol. 2020. P. 1-14.

Boolean networks are a popular modeling framework in computational biology to capture the dynamics of molecular networks, such as gene regulatory networks. It has been observed that many published models of such networks are defined by regulatory rules driving the dynamics that have certain so-called canalizing properties. In this paper, we investigate the dynamics of a random Boolean network with such properties using analytical methods and simulations. From our simulations, we observe that Boolean networks with higher canalizing depth have generally fewer attractors, the attractors are smaller, and the basins are larger, with implications for the stability and robustness of the models. These properties are relevant to many biological applications. Moreover, our results show that, from the standpoint of the attractor structure, high canalizing depth, compared to relatively small positive canalizing depth, has a very modest impact on dynamics. Motivated by these observations, we conduct mathematical study of the attractor structure of a random Boolean network of canalizing depth one (i.e., the smallest positive depth). For every positive integer , we give an explicit formula for the limit of the expected number of attractors of length in an n-state random Boolean network as n goes to infinity.

Added: May 23, 2020