• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 3
Sort:
by name
by year
Article
Slunyaev A., Досаев А. Communications in Nonlinear Science and Numerical Simulation. 2019. Vol. 66. P. 167-182.

The issue of a recurrence of the modulationally unstable water wave trains within the framework of the fully nonlinear potential Euler equations is addressed. It is examined, in particular, if a modulation which appears from nowhere (i.e., is infinitesimal initially) and generates a rogue wave which then disappears with no trace. If so, this wave solution would be a breather solution of the primitive hydrodynamic equations. It is shown with the help of the fully nonlinear numerical simulation that when a rogue wave occurs from a uniform Stokes wave train, it excites other waves which have different lengths, what prevents the complete recurrence and, eventually, results in a quasi-periodic breathing of the wave envelope. Meanwhile the discovered effects are rather small in magnitude, and the period of the modulation breathing may be thousands of the dominant wave periods. Thus, the obtained solution may be called a quasi-breather of the Euler equations.

Added: Feb 14, 2019
Article
Abrashkin A. A., Oshmarina O. E. Communications in Nonlinear Science and Numerical Simulation. 2016. Vol. 34. P. 66-76.

The process of rogue wave formation on deep water is considered. A wave of extreme amplitude is born against the background of uniform waves (Gerstner waves) under the action of external pressure on free surface. The pressure distribution has a form of a quasi-stationary “pit”. The fluid motion is supposed to be a vortex one and is described by an exact solution of equations of 2D hydrodynamics for an ideal fluid in Lagrangian coordinates. Liquid particles are moving around circumferences of different radii in the absence of drift flow. Values of amplitude and wave steepness optimal for rogue wave formation are found numerically. The influence of vorticity distribution and pressure drop on parameters of the fluid is investigated.

Added: Nov 3, 2015
Article
Gromov E., Malomed B., Tyutin V. V. Communications in Nonlinear Science and Numerical Simulation. 2018. Vol. 54. P. 13-20.

The dynamics of two-component solitons is studied, analytically and numerically, in the framework of a system of coupled extended nonlinear Schrödinger equations, which incorporate the cross-phase modulation, pseudo-stimulated-Raman-scattering (pseudo-SRS), cross-pseudo-SRS, and spatially inhomogeneous second-order dispersion (SOD). The system models co-propagation of electromagnetic waves with orthogonal polarizations in plasmas. It is shown that the soliton's wavenumber downshift, caused by pseudo-SRS, may be compensated by an upshift, induced by the inhomogeneous SOD, to produce stable stationary two-component solitons. The corresponding approximate analytical solutions for stable solitons are found. Analytical results are well confirmed by their numerical counterparts. Further, the evolution of inputs composed of spatially even and odd components is investigated by means of systematic simulations, which reveal three different outcomes: formation of a breather which keeps opposite parities of the components; splitting into a pair of separating vector solitons; and spreading of the weak odd component into a small-amplitude pedestal with an embedded dark soliton.

Added: May 18, 2017