• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 2
Sort:
by name
by year
Article
Artale A., Kontchakov R., Ryzhikov V. et al. ACM Transactions on Computational Logic. 2014. Vol. 15. No. 3. P. 25.1-25.50.

We design temporal description logics (TDLs) suitable for reasoning about temporal conceptual data models and investigate their computational complexity. Our formalisms are based on DL-Lite logics with three types of concept inclusions (ranging from atomic concept inclusions and disjointness to the full Booleans), as well as cardinality constraints and role inclusions. The logics are interpreted over the Cartesian products of object domains and the flow of time (ℤ, <), satisfying the constant domain assumption. Concept and role inclusions of the TBox hold at all moments of time (globally), and data assertions of the ABox hold at specified moments of time. To express temporal constraints of conceptual data models, the languages are equipped with flexible and rigid roles, standard future and past temporal operators on concepts, and operators “always” and “sometime” on roles. The most expressive of our TDLs (which can capture lifespan cardinalities and either qualitative or quantitative evolution constraints) turns out to be undecidable. However, by omitting some of the temporal operators on concepts/roles or by restricting the form of concept inclusions, we construct logics whose complexity ranges between NLogSpace and PSpace. These positive results are obtained by reduction to various clausal fragments of propositional temporal logic, which opens a way to employ propositional or first-order temporal provers for reasoning about temporal data models.

Added: Mar 25, 2015
Article
Kontchakov R., Pratt-Hartmann I., Nenov Y. et al. ACM Transactions on Computational Logic. 2013. Vol. 14. No. 2. P. 13.1-13.48.

We consider the quantifier-free languages, Bc and Bc°, obtained by augmenting the signature of Boolean algebras with a unary predicate representing, respectively, the property of being connected, and the property of having a connected interior. These languages are interpreted over the regular closed sets of Rn (n ≥ 2) and, additionally, over the regular closed semilinear sets of Rn. The resulting logics are examples of formalisms that have recently been proposed in the Artificial Intelligence literature under the rubric Qualitative Spatial Reasoning. We prove that the satisfiability problem for Bc is undecidable over the regular closed semilinear sets in all dimensions greater than 1, and that the satisfiability problem for Bc and Bc° is undecidable over both the regular closed sets and the regular closed semilinear sets in the Euclidean plane. However, we also prove that the satisfiability problem for Bc° is NP-complete over the regular closed sets in all dimensions greater than 2, while the corresponding problem for the regular closed semilinear sets is ExpTime-complete. Our results show, in particular, that spatial reasoning is much harder over Euclidean spaces than over arbitrary topological spaces.

Added: Mar 25, 2015