• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 6
Sort:
by name
by year
Article
P.A. Bespalov, Misonova V., O.N. Savina. Journal of Atmospheric and Solar-Terrestrial Physics. 2016. Vol. 147. P. 148-155.

We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.

 

 

Added: Sep 14, 2016
Article
Grigorenko E. E., Malova H. V., Popov Victor Yu et al. Journal of Atmospheric and Solar-Terrestrial Physics. 2018. Vol. 177. No. 63. P. 46-53.

We use Cluster and THEMIS simultaneous observations to study the spatial distributions of a shear BY field in the Plasma Sheet (PS) of the Earth's magnetotail at 31 RE < X < 9 RE. The best correlation between the BY field in the PS (BY_PS) and the Y-component of the Interplanetary Magnetic Field (IMF) (BY_IMF) was observed during the quiet PS periods when high speed plasma flows were not detected. During active PS periods the correlation between the BY_PS and BY_ IMF was poor. The analysis of spatial distribution of the BY field along the direction perpendicular to the Current Sheet (CS) plane showed the presence of one of the following configurations, which can be self-consistently generated in the CS: 1) the “quadrupole” distribution of the BY field usually associated with the Hall current system in the vicinity of X-line and 2) the symmetrical “bell-shaped” distribution formed due to the BY amplification near the neutral plane of the CS. Multipoint observations revealed the transient appearance of the “quadrupole” BY distribution during the periods of X-line formation in the mid-tail. This distribution was observed during a few minutes within, at least, 12 RE from the estimated X-line position. On the contrary, the symmetrical “bell-shaped” distribution is more localized in the radial direction and, generally, has a larger observation time (up to ~10 min). Thus, the internal CS perturbations caused either by the Hall currents related to reconnection or by the peculiarities of the local quasi-adiabatic ion dynamics sufficiently affect the shear BY field existing in the magnetotail due to the partial IMF penetration.

Added: Sep 3, 2017
Article
Kostinskiy A., Syssoev V. S., Mareev E. A. et al. Journal of Atmospheric and Solar-Terrestrial Physics. 2015. Vol. 135. P. 36-41.

The possibility of initiation of electric discharges by a crossbow bolt (projectile) moving in the electric field of a cloud of negatively charged water droplets has been demonstrated for the first time. Over one hundred of discharges have been produced. For each event, a high-speed video camera recorded the images of upward positive leaders developing from both the nearby grounded sphere and the projectile, followed by the return-stroke-like process. Corresponding currents were measured and integrated photos of the events were obtained. The results can help to improve our understanding of lightning initiation by airborne vehicles and by a vertical conductor rapidly extended below the thundercloud in order to trigger lightning with the rocket-and-wire technique.

Added: Dec 18, 2015
Article
O.N.Savina, Bespalov P. Journal of Atmospheric and Solar-Terrestrial Physics. 2015. Vol. 123. P. 137-143.

In this study generalised Lamb waves in a nonisothermal atmosphere have been examined theoretically. Our results suggest that the pressure component of the Lamb wave decreases exponentially upwards near the layer with an extremum of sound speed. We find that local wave disturbances of the wave pressure component are formed in the resonance layer at which the horizontal phase velocity is equal to the sound speed. These resonance layers are the reason for a filtration of atmospheric disturbances. Such filtration is an obstacle to the acoustic-gravity wave propagation up to the ionosphere.

Added: Dec 17, 2014
Article
P.A. Bespalov, Savina O. N. Journal of Atmospheric and Solar-Terrestrial Physics. 2019. Vol. 185. P. 58-67.

Some aspects of the theory of generation of magnetospheric chorus are discussed. An original approach to solving the problem of oblique chorus generation near the Gendrin angle is outlined and partially realized within the framework of a beam pulsed amplifier mechanism. Parameters of the resonance electron beam in the chorus excitation region are determined theoretically. A short electromagnetic pulse amplification is calculated by means of a linear approach. Some important properties of the oblique chorus emissions, such as the location of the excitation region, frequency band, wave vector direction, group velocity direction, temporary dynamics, and energy of particles and waves are explained.

Added: Apr 11, 2019
Article
Bespalov P. A., Savina O. N., Misonova V. Journal of Atmospheric and Solar-Terrestrial Physics. 2018. Vol. 175. P. 40-48.

Trans-ionospheric propagation of the VLF electromagnetic wave from an altitude of 800 km to the Earth's surface is considered using the model of stratified media. The numerical solution of the wave equations for the mid-latitude ionosphere model conditions is found. The wave field in the lower ionosphere is calculated using the full-wave approach. The wave field in the upper ionosphere is calculated using the matrix method of perturbations for a slightly inhomogeneous plasma. Energy reflection coefficient and the horizontal magnetic field amplitude of the wave on the ground surface are calculated. Peculiarities of the wave reflection and transmission at different times of the day are analyzed. The obtained results are important for studying the ELF/VLF emission phenomena observed both onboard the satellites and in ground-based observatories.

Added: Jun 19, 2018