• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site
Of all publications in the section: 2
Sort:
by name
by year
Article
W. M. P. van der Aalst. Software and Systems Modeling. 2014. P. 1-7.

Since their inception in 1962, Petri nets have been used in a wide variety of application domains. Although Petri nets are graphical and easy to understand, they have formal semantics and allow for analysis techniques ranging from model checking and structural analysis to process mining and performance analysis. Over time Petri nets emerged as a solid foundation for Business Process Management (BPM) research. The BPM discipline develops methods, techniques, and tools to support the design, enactment, management, and analysis of operational business processes. Mainstream business process modeling notations and workflow management systems are using token-based semantics borrowed from Petri nets. Moreover, state-of-the-art BPM analysis techniques are using Petri nets as an internal representation. Users of BPM methods and tools are often not aware of this. This paper aims to unveil the seminal role of Petri nets in BPM.

Added: Oct 17, 2014
Article
Kalenkova A. A., van der Aalst W., Lomazova I. A. et al. Software and Systems Modeling. 2017. Vol. 16. No. 4. P. 1019-1048.

Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining techniques used to discover process models from event logs, find log and model deviations, and analyze performance characteristics of processes. The representational bias (a way to model processes) plays an important role in process mining. The BPMN 2.0 (Business Process Model and Notation) standard is widely used and allows to build conventional and understandable process models. In addition to the flat control flow perspective, subprocesses, data flows, resources can be integrated within one BPMN diagram. This makes BPMN very attractive for both process miners and business users. In this paper, we describe and justify robust control flow conversion algorithms, which provide the basis for more advanced BPMN-based discovery and conformance checking algorithms. We believe that the results presented in this paper can be used for a wide variety of BPMN mining and conformance checking algorithms. We also provide metrics for the processes discovered before and after the conversion to BPMN structures. Cases for which conversion algorithms produce more compact or more involved BPMN models in comparison with the initial models are identified.

Added: Jun 11, 2015