### ?

## Homological mirror symmetry for punctured spheres

Journal of the American Mathematical Society. 2013. Vol. 26. No. 4. P. 1051-1083.

Abouzaid M., Auroux D., Efimov Alexander I., Katzarkov L., Orlov Dmitri

We prove that the wrapped Fukaya category of a punctured sphere ($ S^{2}$ with an arbitrary number of points removed) is equivalent to the triangulated category of singularities of a mirror Landau-Ginzburg model, proving one side of the homological mirror symmetry conjecture in this case. By investigating fractional gradings on these categories, we conclude that cyclic covers on the symplectic side are mirror to orbifold quotients of the Landau-Ginzburg model.

Galkin S., Golyshev V., Iritani H., Duke Mathematical Journal 2016 Vol. 165 No. 11 P. 2005-2077

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: November 18, 2014

Entov M., Verbitsky M., Full symplectic packing for tori and hyperkahler manifolds / Cornell University. Series math "arxiv.org". 2014.

Let M be a closed symplectic manifold of volume V. We say that M admits a full symplectic packing by balls if any collection of symplectic balls of total volume less than V admits a symplectic embedding to M. In 1994 McDuff and Polterovich proved that symplectic packings of Kahler manifolds can be characterized in ...

Added: February 5, 2015

Galkin S., Golyshev V., Iritani H., Gamma classes and quantum cohomology of Fano manifolds: Gamma conjectures / Cornell University. Series math "arxiv.org". 2014. No. 1404.6407.

We propose Gamma Conjectures for Fano manifolds which can be thought of as a square root of the index theorem. Studying the exponential asymptotics of solutions to the quantum differential equation, we associate a principal asymptotic class A_F to a Fano manifold F. We say that F satisfies Gamma Conjecture I if A_F equals the ...

Added: May 4, 2014

Yuri Prokhorov, Zaidenberg M., Examples of cylindrical Fano fourfolds / Cornell University. Series math "arxiv.org". 2014.

We construct 4 different families of smooth Fano fourfolds with Picard rank 1, which contain cylinders, i.e., Zariski open subsets of the form Z x A1, where Z is a quasiprojective variety. The affi ne cones over such a fourfold admit eff ective Ga-actions. Similar constructions of cylindrical Fano threefolds were done previously in our ...

Added: August 18, 2014

Efimov A., Homotopy finiteness of some DG categories from algebraic geometry / Cornell University. Series math "arxiv.org". 2013.

In this paper, we show that bounded derived categories of coherent sheaves (considered as DG categories) on separated schemes of finite type over a field of characteristic zero are homotopically finitely presented. This confirms a conjecture of Kontsevich. The proof uses categorical resolution of singularities of Kuznetsov and Lunts, which is based on the ordinary ...

Added: October 31, 2013

Kharlamov V., Viktor Kulikov, On numerically pluricanonical cyclic coverings / Cornell University. Series math "arxiv.org". 2013.

In this article, we investigate some properties of cyclic coverings of complex surfaces of general type branched along smooth curves that are numerically equivalent to a multiple of the canonical class. The main results concern coverings of surfaces of general type with p_g=0 and Miyaoka--Yau surfaces; in particular, they provide new examples of multicomponent moduli ...

Added: December 27, 2013

V. V. Shevchishin, Izvestiya. Mathematics 2009 Vol. 73 No. 4 P. 797-859

In this paper we prove the non-existence of Lagrangian embeddings of the Klein bottle K in R4 and CP2. We exploit the existence of a special embedding of K in a symplectic Lefschetz pencil pr:X→S2 and study its monodromy. As the main technical tool, we develop the combinatorial theory of mapping class groups. The results ...

Added: March 18, 2013

Positselski L., Efimov A., Coherent analogues of matrix factorizations and relative singularity categories / Cornell University. Series math "arxiv.org". 2013. No. arXiv:1102.0261.

We define the triangulated category of relative singularities of a closed subscheme in a scheme. When the closed subscheme is a Cartier divisor, we consider matrix factorizations of the related section of a line bundle, and their analogues with locally free sheaves replaced by coherent ones. The appropriate exotic derived category of coherent matrix factorizations ...

Added: December 22, 2013

Michael Finkelberg, Leonid Rybnikov, Quantization of Drinfeld Zastava in type C / Cornell University. Series math "arxiv.org". 2013.

Drinfeld zastava is a certain closure of the moduli space of maps from the projective line to the Kashiwara flag scheme of an affine Lie algebra g^. In case g is the symplectic Lie algebra spN, we introduce an affine, reduced, irreducible, normal quiver variety Z which maps to the zastava space isomorphically in characteristic ...

Added: December 27, 2013

A. Levin, Olshanetsky M., Zotov A., Classification of Isomonodromy Problems on Elliptic Curves / Cornell University. Series math "arxiv.org". 2013.

We consider the isomonodromy problems for flat $G$-bundles over punctured
elliptic curves $\Sigma_\tau$ with regular singularities of connections at
marked points. The bundles are classified by their characteristic classes.
These classes are elements of the second cohomology group
$H^2(\Sigma_\tau,{\mathcal Z}(G))$, where ${\mathcal Z}(G)$ is the center of
$G$. For any complex simple Lie group $G$ and arbitrary class we define ...

Added: December 27, 2013

Positselski L., Contraherent cosheaves / Cornell University. Series math "arxiv.org". 2014. No. 1209.2995.

Contraherent cosheaves are globalizations of cotorsion (or similar) modules over commutative rings obtained by gluing together over a scheme. The category of contraherent cosheaves over a scheme is a Quillen exact category with exact functors of infinite product. Over a quasi-compact semi-separated scheme or a Noetherian scheme of finite Krull dimension (in a different version ...

Added: February 6, 2013

Lee K., Shabalin T., Exceptional collections on some fake quadrics / Cornell University. Series math "arxiv.org". 2014.

We construct exceptional collections of maximal length on four families of
surfaces of general type with $p_g=q=0$ which are isogenous to a product of
curves. From these constructions we obtain new examples of quasiphantom
categories as their orthogonal complements. ...

Added: October 17, 2014

Galkin S., Shinder E., Exceptional collections of line bundles on the Beauville surface / Cornell University. Series math "arxiv.org". 2012. No. 1210.3339.

We construct quasi-phantom admissible subcategories in the derived category of coherent sheaves on the Beauville surface S. These quasi-phantoms subcategories appear as right orthogonals to subcategories generated by exceptional collections of maximal possible length 4 on S. We prove that there are exactly 6 exceptional collections consisting of line bundles (up to a twist) and these collections ...

Added: September 14, 2013

Lev Soukhanov, On the phenomena of constant curvature in the diffusion-orthogonal polynomials / Cornell University. Series math "arxiv.org". 2014.

We consider the systems of diffusion-orthogonal polynomials, defined in the
work [1] of D. Bakry, S. Orevkov and M. Zani and (particularly) explain why
these systems with boundary of maximal possible degree should always come from
the group, generated by reflections. Our proof works for the dimensions $2$ (on
which this phenomena was discovered) and $3$, and fails in ...

Added: September 19, 2014

F.A. Bogomolov, Vik.S. Kulikov, The ambiguity index of an equipped finite group / Cornell University. Series math "arxiv.org". 2014.

In \cite{Ku0}, the ambiguity index $a_{(G,O)}$ was introduced for each
equipped finite group $(G,O)$. It is equal to the number of connected
components of a Hurwitz space parametrizing coverings of a projective line with
Galois group $G$ assuming that all local monodromies belong to conjugacy
classes $O$ in $G$ and the number of branch points is greater than some
constant. ...

Added: November 21, 2014

Brav C. I., Thomas H., Mathematische Annalen 2011 Vol. 351 No. 4 P. 1005-1017

We establish faithfulness of braid group actions generated by twists along an ADE configuration of 22-spherical objects in a derived category. Our major tool is the Garside structure on braid groups of type ADE. This faithfulness result provides the missing ingredient in Bridgeland's description of a space of stability conditions associated to a Kleinian singularity. ...

Added: September 29, 2014

Campana F., Demailly J., Misha Verbitsky, Compact Kahler 3-manifolds without non-trivial subvarieties / Cornell University. Series math "arxiv.org". 2013.

We prove that any compact K\"ahler 3-dimensional manifold which has no non-trivial complex subvarieties is a torus. This is a very special case of a general conjecture on the structure of 'simple manifolds', central in the bimeromorphic classification of compact K\"ahler manifolds. The proof follows from the Brunella pseudo-effectivity theorem, combined with fundamental results of ...

Added: May 13, 2013

Romaskevich O. L., L'Enseignement Mathématique 2014

We consider 3 -periodic orbits in an elliptic billiard. Numerical experiments conducted by Dan Reznik have shown that the locus of the centers of inscribed circles of the corresponding triangles is an ellipse. We prove this fact by the complexification of the problem coupled with the complex law of reflection. ...

Added: December 25, 2014

Fedor Bogomolov, De Oliveira B., Local structure of closed symmetric 2-differentials / Cornell University. Series math "arxiv.org". 2014.

In the authors's previous work on symmetric differentials and their
connection to the topological properties of the ambient manifold, a class of
symmetric differentials was introduced: closed symmetric differentials
([BoDeO11] and [BoDeO13]). In this article we give a description of the local
structure of closed symmetric 2-differentials on complex surfaces, with an
emphasis towards the local decompositions as products of ...

Added: November 21, 2014

Victor Kulikov, Shustin E., Duality of planar and spacial curves: new insight / Cornell University. Series math "arxiv.org". 2014.

We study the geometry of equiclassical strata of the discriminant in the space of plane curves of a given degree, which are families of curves of given degree, genus and class (degree of the dual curve). Our main observation is that the use of duality transformation leads to a series of new sufficient conditions for ...

Added: February 2, 2015

Rybakov S., On classification of groups of points on abelian varieties over finite fields / Cornell University. Series math "arxiv.org". 2014.

A k-isogeny class of abelian varieties over a finite field k is uniquely determined by the Weil polynomial f of any variety from this class. When we consider classification problems concerning abelian varieties inside an isogeny class, the classification can be given in terms of the corresponding Weil polynomial. In this paper we improve our ...

Added: January 21, 2014

Bezrukavnikov R., Finkelberg M. V., Wreath Macdonald polynomials and categorical McKay correspondence (with Appendices by Ivan Losev, Vadim Vologodsky) / Cornell University. Series math "arxiv.org". 2012. No. 1208.3696.

Mark Haiman has reduced Macdonald positivity conjecture to a statement about geometry of the Hilbert scheme of points on the plane, and formulated a generalization of the conjectures where the symmetric group is replaced by the wreath product $S_n\ltimes (Z/r Z)^n$. He has proven the original conjecture by establishing the geometric statement about the Hilbert ...

Added: February 6, 2013

Fedor Bogomolov, Yuri Prokhorov, On stable conjugacy of finite subgroups of the plane Cremona group, I / Cornell University. Series math "arxiv.org". 2013.

We discuss the problem of stable conjugacy of finite subgroups of Cremona
groups. We show that the group $H^1(G,Pic(X))$ is a stable birational invariant
and compute this group in some cases. ...

Added: November 21, 2014

Ivan Cheltsov, Park J., Won J., Cylinders in singular del Pezzo surfaces / Cornell University. Series math "arxiv.org". 2013.

For each del Pezzo surface $S$ with du Val singularities, we determine
whether it admits a $(-K_S)$-polar cylinder or not. If it allows one, then we
present an effective divisor $D$ that is $\mathbb{Q}$-linearly equivalent to
$-K_S$ and such that the open set $S\setminus\mathrm{Supp}(D)$ is a cylinder.
As a corollary, we classify all the del Pezzo surfaces with du ...

Added: December 27, 2013