### Article

## Pattern recognition and increasing of the computational efficiency of a parallel realization of the probabilistic neural network with homogeneity testing

The research subject is the computational complexity of the probabilistic neural network (PNN) in the pattern recognition problem for large model databases. We examined the following methods of increasing the efficiency of a neuralnetwork classifier: a parallel multithread realization, reducing the PNN to a criterion with testing of homogeneity of feature histograms of input and reference images, approximate nearestneighbor analyses (BestBin First, directed enumeration methods). The approach was tested in facialrecognition experiments with FERET dataset.

The article is devoted to pattern recognition task with the database containing small number of samples per class. By mapping of local continuous feature vectors to a discrete range, this problem is reduced to statistical classification of a set of discrete finite patterns. It is demonstrated that Bayesian decision under the assumption that probability distributions can be estimated using the Parzen kernel and the Gaussian window with a fixed variance for all the classes, implemented in the PNN, is not optimal in the classification of a set of patterns. We presented here the novel modification of the PNN with homogeneity testing which gives an optimal solution of the latter task under the same assumption about probability densities. By exploiting the discrete nature of patterns our modification prevents the well-known drawbacks of the memory-based approach implemented in both the PNN and the PNN with homogeneity testing, namely, low classification speed and high requirements to the memory usage. Our modification only requires the storage and processing of the histograms of input and training samples. We present the results of an experimental study in two practically important tasks: 1) the problem of Russian text authorship attribution with character n-grams features; and 2) face recognition with well-known datasets (AT&T, FERET and JAFFE) and comparison of color- and gradient-orientation histograms. Our results support the statement that the proposed network provides better accuracy (1-7%) and is much more resistant to change of the smoothing parameter of Gaussian kernel function in comparison with the original PNN.

The article is devoted to the problem of image recognition in real-time applications with a large database containing hundreds of classes. The directed enumeration method as an alternative to exhaustive search is examined. This method has two advantages. First, it could be applied with measures of similarity which do not satisfy metric properties (chi-square distance, Kullback-Leibler information discrimination, etc). Second, the directed enumeration method increases recognition speed even in the most difficult cases which seem to be very important in practical terms. In these cases many neighbors are located at very similar distances. In this paper we present the results of an experimental study of the directed enumeration method with comparison of color- and gradient-orientation histograms in solving the problem of face recognition with well-known datasets (Essex, FERET). It is shown that the proposed method is characterized by increased computing efficiency of automatic image recognition (3-12 times in comparison with a conventional nearest neighbor classifier).

This book constitutes the refereed proceedings of the 9th International Conference on Cellular Automata for Research and Industry, ACRI 2010, held in Ascoli Piceno, Italy, in September 2010. The first part of the volume contains 39 revised papers that were carefully reviewed and selected from the main conference; they are organized according to six main topics: theoretical results on cellular automata, modeling and simulation with cellular automata, CA dynamics, control and synchronization, codes and cryptography with cellular automata, cellular automata and networks, as well as CA-based hardware. The second part of the volume comprises 35 revised papers dedicated to contributions presented during ACRI 2010 workshops on theoretical advances, specifically asynchronous cellular automata, and challenging application contexts for cellular automata: crowds and CA, traffic and CA, and the international workshop of natural computing.

Probabilistic neural network (PNN) is the well-known instance-based learning algorithm, which is widely used in various pattern classification and regression tasks, if rather small number of instances for each class is available. The known disadvantage of this network is its insufficient classification computational complexity. The common way to overcome this drawback is the reduction techniques with selection of the most typical instances. Such approach causes the shifting of the estimates of the class probability distribution, and, in turn, the decrease of the classification accuracy. In this paper we examine another possible solution by replacing the Gaussian window and the Parzen kernel to the orthogonal series Fejér kernel and using the naïve assumption about independence of features. It is shown, that our approach makes it possible to achieve much better runtime complexity in comparison with either original PNN or its modification with the preliminary clustering of the training set.

The problems of identifying latent parallelism in the algorithm by explicitly max (the construction of stacked-parallel form of the algorithm graph) and implicit (the method of streaming - DATA-FLOW - calculations), the development of parallel programs in the MPI-paradigm programming and quantitative research strength calculations for the acceleration parallelization on the parameters of a multiprocessor system and the quality of parallel programs. The manual is practical and can be used by students to prepare for the performance of laboratory and practice of the works, of course and diploma projects. Generated by network applications ra-operability in a multiprocessor environment, architecture MPP (Massively Par-allel Processing); particularly on Linux-cluster computing IT department MGUPI 4. Before working to understand whole con-SPECT lectures on 'Parallel Computing'.

A model for organizing cargo transportation between two node stations connected by a railway line which contains a certain number of intermediate stations is considered. The movement of cargo is in one direction. Such a situation may occur, for example, if one of the node stations is located in a region which produce raw material for manufacturing industry located in another region, and there is another node station. The organization of freight traﬃc is performed by means of a number of technologies. These technologies determine the rules for taking on cargo at the initial node station, the rules of interaction between neighboring stations, as well as the rule of distribution of cargo to the ﬁnal node stations. The process of cargo transportation is followed by the set rule of control. For such a model, one must determine possible modes of cargo transportation and describe their properties. This model is described by a ﬁnite-dimensional system of diﬀerential equations with nonlocal linear restrictions. The class of the solution satisfying nonlocal linear restrictions is extremely narrow. It results in the need for the “correct” extension of solutions of a system of diﬀerential equations to a class of quasi-solutions having the distinctive feature of gaps in a countable number of points. It was possible numerically using the Runge–Kutta method of the fourth order to build these quasi-solutions and determine their rate of growth. Let us note that in the technical plan the main complexity consisted in obtaining quasi-solutions satisfying the nonlocal linear restrictions. Furthermore, we investigated the dependence of quasi-solutions and, in particular, sizes of gaps (jumps) of solutions on a number of parameters of the model characterizing a rule of control, technologies for transportation of cargo and intensity of giving of cargo on a node station.

Event logs collected by modern information and technical systems usually contain enough data for automated process models discovery. A variety of algorithms was developed for process models discovery, conformance checking, log to model alignment, comparison of process models, etc., nevertheless a quick analysis of ad-hoc selected parts of a journal still have not get a full-fledged implementation. This paper describes an ROLAP-based method of multidimensional event logs storage for process mining. The result of the analysis of the journal is visualized as directed graph representing the union of all possible event sequences, ranked by their occurrence probability. Our implementation allows the analyst to discover process models for sublogs defined by ad-hoc selection of criteria and value of occurrence probability

The geographic information system (GIS) is based on the first and only Russian Imperial Census of 1897 and the First All-Union Census of the Soviet Union of 1926. The GIS features vector data (shapefiles) of allprovinces of the two states. For the 1897 census, there is information about linguistic, religious, and social estate groups. The part based on the 1926 census features nationality. Both shapefiles include information on gender, rural and urban population. The GIS allows for producing any necessary maps for individual studies of the period which require the administrative boundaries and demographic information.

It is well-known that the class of sets that can be computed by polynomial size circuits is equal to the class of sets that are polynomial time reducible to a sparse set. It is widely believed, but unfortunately up to now unproven, that there are sets in EXPNP, or even in EXP that are not computable by polynomial size circuits and hence are not reducible to a sparse set. In this paper we study this question in a more restricted setting: what is the computational complexity of sparse sets that are *selfreducible*? It follows from earlier work of Lozano and Torán (in: Mathematical systems theory, 1991) that EXPNP does not have sparse selfreducible hard sets. We define a natural version of selfreduction, tree-selfreducibility, and show that NEXP does not have sparse tree-selfreducible hard sets. We also construct an oracle relative to which all of EXP is reducible to a sparse tree-selfreducible set. These lower bounds are corollaries of more general results about the computational complexity of sparse sets that are selfreducible, and can be interpreted as super-polynomial circuit lower bounds for NEXP.

I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables