### Article

## Pattern recognition and increasing of the computational efficiency of a parallel realization of the probabilistic neural network with homogeneity testing

The research subject is the computational complexity of the probabilistic neural network (PNN) in the pattern recognition problem for large model databases. We examined the following methods of increasing the efficiency of a neuralnetwork classifier: a parallel multithread realization, reducing the PNN to a criterion with testing of homogeneity of feature histograms of input and reference images, approximate nearestneighbor analyses (BestBin First, directed enumeration methods). The approach was tested in facialrecognition experiments with FERET dataset.

The article is devoted to pattern recognition task with the database containing small number of samples per class. By mapping of local continuous feature vectors to a discrete range, this problem is reduced to statistical classification of a set of discrete finite patterns. It is demonstrated that Bayesian decision under the assumption that probability distributions can be estimated using the Parzen kernel and the Gaussian window with a fixed variance for all the classes, implemented in the PNN, is not optimal in the classification of a set of patterns. We presented here the novel modification of the PNN with homogeneity testing which gives an optimal solution of the latter task under the same assumption about probability densities. By exploiting the discrete nature of patterns our modification prevents the well-known drawbacks of the memory-based approach implemented in both the PNN and the PNN with homogeneity testing, namely, low classification speed and high requirements to the memory usage. Our modification only requires the storage and processing of the histograms of input and training samples. We present the results of an experimental study in two practically important tasks: 1) the problem of Russian text authorship attribution with character n-grams features; and 2) face recognition with well-known datasets (AT&T, FERET and JAFFE) and comparison of color- and gradient-orientation histograms. Our results support the statement that the proposed network provides better accuracy (1-7%) and is much more resistant to change of the smoothing parameter of Gaussian kernel function in comparison with the original PNN.

The article is devoted to the problem of image recognition in real-time applications with a large database containing hundreds of classes. The directed enumeration method as an alternative to exhaustive search is examined. This method has two advantages. First, it could be applied with measures of similarity which do not satisfy metric properties (chi-square distance, Kullback-Leibler information discrimination, etc). Second, the directed enumeration method increases recognition speed even in the most difficult cases which seem to be very important in practical terms. In these cases many neighbors are located at very similar distances. In this paper we present the results of an experimental study of the directed enumeration method with comparison of color- and gradient-orientation histograms in solving the problem of face recognition with well-known datasets (Essex, FERET). It is shown that the proposed method is characterized by increased computing efficiency of automatic image recognition (3-12 times in comparison with a conventional nearest neighbor classifier).

This book constitutes the refereed proceedings of the 9th International Conference on Cellular Automata for Research and Industry, ACRI 2010, held in Ascoli Piceno, Italy, in September 2010. The first part of the volume contains 39 revised papers that were carefully reviewed and selected from the main conference; they are organized according to six main topics: theoretical results on cellular automata, modeling and simulation with cellular automata, CA dynamics, control and synchronization, codes and cryptography with cellular automata, cellular automata and networks, as well as CA-based hardware. The second part of the volume comprises 35 revised papers dedicated to contributions presented during ACRI 2010 workshops on theoretical advances, specifically asynchronous cellular automata, and challenging application contexts for cellular automata: crowds and CA, traffic and CA, and the international workshop of natural computing.

Probabilistic neural network (PNN) is the well-known instance-based learning algorithm, which is widely used in various pattern classification and regression tasks, if rather small number of instances for each class is available. The known disadvantage of this network is its insufficient classification computational complexity. The common way to overcome this drawback is the reduction techniques with selection of the most typical instances. Such approach causes the shifting of the estimates of the class probability distribution, and, in turn, the decrease of the classification accuracy. In this paper we examine another possible solution by replacing the Gaussian window and the Parzen kernel to the orthogonal series Fejér kernel and using the naïve assumption about independence of features. It is shown, that our approach makes it possible to achieve much better runtime complexity in comparison with either original PNN or its modification with the preliminary clustering of the training set.

The problems of identifying latent parallelism in the algorithm by explicitly max (the construction of stacked-parallel form of the algorithm graph) and implicit (the method of streaming - DATA-FLOW - calculations), the development of parallel programs in the MPI-paradigm programming and quantitative research strength calculations for the acceleration parallelization on the parameters of a multiprocessor system and the quality of parallel programs. The manual is practical and can be used by students to prepare for the performance of laboratory and practice of the works, of course and diploma projects. Generated by network applications ra-operability in a multiprocessor environment, architecture MPP (Massively Par-allel Processing); particularly on Linux-cluster computing IT department MGUPI 4. Before working to understand whole con-SPECT lectures on 'Parallel Computing'.

The problem of management of the nonlinear object which is exposed to impact of uncontrollable indignations, is considered in a key of differential game. Synthesis of optimum managements is made with application of transformation of the nonlinear equation of initial object in the differential equation with the parameters depending on a condition. The square-law functional of quality allows to formulate synthesis conditions in the form of need of search of solutions of the equation of Rikkati. The solution of the equation of Rikkati with the parameters depending on a condition, is in a symbolical view with application of algebraic methods that allows to generalize a number of earlier published theoretical results, to receive rather constructive decisions in a number of statements of problems of management.

The article is based upon the fact that the growing demand for master data management systems has not yet produced a commonly accepted metodology for their design and development/ The article offers two mathematical models? that allow a master data management systems designer a way to formally describe their system before development and verify the system quality by measurements? unique to master data management systems.

I give the explicit formula for the (set-theoretical) system of Resultants of m+1 homogeneous polynomials in n+1 variables