### ?

## Торы в группах Кремоны

Известия РАН. Серия математическая. 2013. Т. 77. № 4. С. 103-134.

We classify up to conjugacy the subgroups of certain types in the full, in the affine, and in the special affine Cremona groups.

We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the Linearization Problem generalizing to disconnected groups Bialynicki-Birula's results of 1966--67. We prove ``fusion theorems'' for *n*-dimensional tori in the affine and in the special affine Cremona groups of rank *n*. In the final section we introduce and discuss the notions of Jordan decomposition and torsion prime numbers for the Cremona groups.

Research target:
Mathematics

Language:
Russian

Popov V. L., Mathematical notes 2019 Vol. 105 No. 3-4 P. 580-581

It is shown that the main result of N. R. Wallach, Principal orbit type theorems for reductive algebraic group actions and the Kempf–Ness Theorem, arXiv:1811.07195v1 (17 Nov 2018), is a special case of a more general statement, which can be deduced, using a short argument, from the classical Richardson and Luna theorems. ...

Added: May 27, 2019

Andrey S. Trepalin, Central European Journal of Mathematics 2014 Vol. 12 No. 2 P. 229-239

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary ...

Added: December 3, 2013

Popov V., / Cornell University. Series math "arxiv.org". 2012. No. arXiv:1207.5205v3.

We classify up to conjugacy the subgroups of certain types in the full, in the affine, and in the special affine Cremona groups. We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the Linearization Problem generalizing to disconnected groups Bialynicki-Birula's results of 1966-67. We prove ``fusion ...

Added: January 9, 2013

Ivan Cheltsov, Constantin Shramov, Transactions of the American Mathematical Society 2014 Vol. 366 No. 3 P. 1289-1331

We propose a new method to study birational maps between Fano varieties based on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four Fano threefolds acted on by the group A6. As an application, we obtain that the Cremona group of rank 3 has at least five non-conjugate subgroups isomorphic to ...

Added: October 10, 2013

Avilov A., Математический сборник 2023 Т. 214 № 6 С. 3-40

In this paper we classify nodal rational non-Q-factorial del Pezzo threefolds of degree 2 which can be G-birationally rigid for some subgroup G ⊂ Aut(X). ...

Added: December 7, 2022

Ю. Г. Прохоров, Известия РАН. Серия математическая 2013 Т. 77 № 3 С. 199-222

We study elements $\tau$ of order two in the birational automorphism groups of rationally connected three-dimensional algebraic varieties such that there exists a non-uniruled divisorial component of the $\tau$-fixed point locus. Using the equivariant minimal model program, we give a rough classification of such elements. ...

Added: July 1, 2013

Avilov A., / Cornell University. Series math "arxiv.org". 2022.

In this paper we classify nodal rational non-Q-factorial del Pezzo threefolds of degree 2 which can be G-birationally rigid for some subgroup G ⊂ Aut(X). ...

Added: December 8, 2022

Prokhorov Y., Springer Proceedings in Mathematics & Statistics 2014 Vol. 79 P. 215-229

We give a sharp bound for orders of elementary abelian 2-groups of birational automorphisms of rationally connected threefolds. ...

Added: January 24, 2014

Vladimir L. Popov, Documenta Mathematica 2015 Vol. Extra Volume: Merkurjev's Sixtieth Birthday P. 513-528

A “rational” version of the strengthened form of the Commuting Derivation Conjecture, in which the assumption of commutativity
is dropped, is proved. A systematic method of constructing in any dimension greater than 3 the examples answering in the negative a question by M. El Kahoui is developed. ...

Added: September 25, 2015

Trepalin A., Central European Journal of Mathematics 2014

Let $\bbk$ be a field of characteristic zero and $G$ be a finite group of automorphisms of projective plane over $\bbk$. Castelnuovo's criterion implies that the quotient of projective plane by $G$ is rational if the field $\bbk$ is algebraically closed. In this paper we prove that $\mathbb{P}^2_{\bbk} / G$ is rational for an arbitrary ...

Added: October 14, 2013

Yuri Prokhorov, / Cornell University. Series math "arxiv.org". 2013.

We prove that, except for a few cases, stable linearizability of finite subgroups of the plane Cremona group implies linearizability. ...

Added: October 10, 2013

Cheltsov I., Shramov K., Transformation Groups 2012 Vol. 17 No. 2 P. 303-350

We study the action of the Klein simple group PSL2(F7 ) consisting of 168 elements on two rational threefolds: the three-dimensional projective space and a smooth Fano threefold X of anticanonical degree 22 and index 1. We show that the Cremona group of rank three has at least three non-conjugate subgroups isomorphic to PSL2(F7 ). As a ...

Added: August 30, 2012

Попов В. Л., Известия РАН. Серия математическая 2019 Т. 84 № 4 С. 194-225

The rst group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in
other groups. The third concerns the connectedness of the Cremona groups. ...

Added: July 31, 2019

Popov V., Izvestiya. Mathematics 2013 Vol. 77 No. 4 P. 742-771

We classify up to conjugacy the subgroups of certain types in the full, affine, and special affine Cremona groups.
We prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results in the linearization problem by generalizing Bia{\l}ynicki-Birula's results of 1966--67 to disconnected groups.
We prove fusion theorems for n-dimensional tori in ...

Added: August 23, 2013

Cheltsov I., Известия РАН. Серия математическая 2014 Т. 78 № 2 С. 167-224

We prove two new local inequalities for divisors on smooth surfaces and consider several applications of these inequalities. ...

Added: December 6, 2013

Gayfullin S., Chunaev D., Фундаментальная и прикладная математика 2023 Т. 25

In this work we obtain sufficient conditions for a variety with a torus action of complexity one to have finite number of automorphism group orbits. ...

Added: December 2, 2023

Prokhorov Y., Transactions of the American Mathematical Society 2014 Vol. 366 No. 3 P. 1289-1331

We propose a new method to study birational maps between Fano varieties based on multiplier ideal sheaves. Using this method, we prove equivariant birational rigidity of four Fano threefolds acted on by the group A6. As an application, we obtain that the Cremona group of rank 3 has at least five non-conjugate subgroups isomorphic to ...

Added: April 9, 2014

Prokhorov Y., Shramov K., / Cornell University. Series arXiv "math". 2016.

We give explicit bounds for Jordan constants of groups of birational automorphisms of rationally connected threefolds over fields of zero characteristic, in particular, for Cremona groups of ranks 2 and 3. ...

Added: September 26, 2016

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2018. No. 1810.00824.

The first group of results of this paper concerns the compressibility of finite subgroups of the Cremona groups. The second concerns the embeddability of other groups in the Cremona groups and, conversely, the Cremona groups in other groups. The third concerns the connectedness of the Cremona groups. ...

Added: October 2, 2018

Prokhorov Y., Shramov K., American Journal of Mathematics 2016 Vol. 138 No. 2 P. 403-418

Assuming the Borisov-Alexeev-Borisov conjecture, we prove that there is a constant $J=J(n)$ such that for any rationally connected variety $X$ of dimension $n$ and any finite subgroup $G\subset{\rm Bir}(X)$ there exists a normal abelian subgroup $A\subset G$ of index at most $J$. In particular, we obtain that the Cremona group ${\rm Cr}_3={\rm Bir}({\Bbb P}^3)$ enjoys ...

Added: August 31, 2016

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2013. No. 1307.5522.

This is an expanded version of my talk at the workshop ``Groups of Automorphisms in Birational and Affine Geometry'', October 29–November 3, 2012, Levico Terme, Italy. The first section is focused on Jordan groups in abstract setting, the second on that in the settings of automorphisms groups and groups of birational self-maps of algebraic varieties. ...

Added: July 21, 2013

Vladimir L. Popov, Pacific Journal of Mathematics 2015 Vol. 279 No. 1--2 (Special issue In memoriam: Robert Steinberg) P. 423-446

For the coordinate algebras of connected affine algebraic groups, we explore
the problem of finding a presentation by generators and relations canonically
determined by the group structure. ...

Added: December 27, 2015

V. L. Popov, Mathematical notes 2017 Vol. 102 No. 1 P. 60-67

We prove that the affine-triangular subgroups are the Borel subgroups of the Cremona groups ...

Added: June 12, 2017

Vladimir L. Popov, / Cornell University. Series math "arxiv.org". 2017. No. 1707.06914 [math.AG].

We classify all connected affine algebraic groups G such that there are only finitely many G-orbits in every algebraic G-variety containing a dense open G-orbit. We also prove that G enjoys this property if and only if every irreducible algebraic G-variety X is modality-regular, i.e., the modality of X (in the sense of V. Arnol’d) ...

Added: July 24, 2017