### Article

## Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation

We consider the time-dependent 1D Schrödinger equation on the half-axis with variable coefficients becoming constant for large x. We study a two-level symmetric in time (i.e. the Crank-Nicolson) and any order finite element in space numerical method to solve it. The method is coupled to an approximate transparent boundary condition (TBC). We prove uniform in time stability with respect to initial data and a free term in two norms, under suitable conditions on an operator in the approximate TBC. We also consider the corresponding method on an infinite mesh on the half-axis. We derive explicitly the discrete TBC allowing us to restrict the latter method to a finite mesh. The operator in the discrete TBC is a discrete convolution in time; in turn its kernel is a multiple discrete convolution. The stability conditions are justified for it. The accomplished computations confirm that high order finite elements coupled to the discrete TBC are effective even in the case of highly oscillating solutions and discontinuous potentials.

The study is carried out by the first author within The National Research University Higher School of Economics' Academic Fund Program in 2012-2013, research grant No. 11-01-0051.

We deal with an initial-boundary value problem for the generalized time-dependent Schrödinger equation with variable coefficients in an unbounded $n$-dimensional parallelepiped ($n\geq 1$). To solve it, the Crank-Nicolson in time and the polylinear finite element in space method with the discrete transparent boundary conditions is considered. We present its stability properties and derive new error estimates $O(\tau^2+|h|^2)$ uniformly in time in $L^2$ space norm, for $n\geq 1$, and mesh $H^1$ space norm, for $1\leq n\leq 3$ (a superconvergence result), under the Sobolev-type assumptions on the initial function. Such estimates are proved for methods with the discrete TBCs for the first time.

We consider an initial-boundary value problem for the one-dimensional nonstationary Schrödinger equation on the half-axis and study a two-level symmetric finite-difference scheme of Numerov type with higher approximation order. This scheme is constructed on a finite mesh, which is uniform with respect to space, with a nonlocal approximate transparent boundary condition of a general form (of Dirichlet-to-Neumann type). We obtain assertions about the stability of the finite-difference scheme in two norms with respect to the initial data and free terms in the equation and in the approximate transparent boundary condition under suitable conditions in the form of inequalities on the operator of approximate transparent boundary condition.

The volume contains articles of scientific staff and faculty of the Department of Computer Science and Applied Mathematics and Scientific-Educational Center of computer modeling of unique buildings and complexes of Moscow State University of Civil Engineering (National Research University), devoted to actual problems of applied mathematics and computational mechanics.

Finite element numerical schemes for solving the continuum mechanics problems are discussed. One of the authors developed a method of acceleration of calculations which uses the simplicial mesh inscribed in the original cubic cell partitioning of a three-dimensional body. In this work it is shown that the obstacle to the construction of this design may be described in terms of modulo 2 homology groups. The method of removing the obstacle is proposed.

We conceder semiclassical asymptotics of the energy levels shift of the Schrödinger operator discrete spectrum with a one-dimensional single-well potential that appears due to a deformation of the potential in the classically forbidden region. Since such a deformation of the potential effects on the quantum particle only due to the tunneling effects, then the corresponding shift of the energy levels is exponentially small. We obtain asymptotic semiclassical formulas for the shift of the energy levels for various types of the potential deformation.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.