### Article

## Improvements to MCS algorithm for the maximum clique problem

In this paper we present improvements to one of the most recent and fastest branch-and-bound algorithm for the maximum clique problem—MCS algorithm by Tomita et al. (Proceedings of the 4th international conference on Algorithms and Computation, WALCOM’10, pp. 191–203, 2010). The suggested improvements include: incorporating of an efficient heuristic returning a high-quality initial solution, fast detection of clique vertices in a set of candidates, better initial colouring, and avoiding dynamic memory allocation. Our computational study shows some impressive results, mainly we have solved p_hat1000-3 benchmark instance which is intractable for MCS algorithm and got speedups of 7, 3000, and 13000 times for gen400_p0.9_55, gen400_p0.9_65, and gen400_p0.9_75 instances correspondingly.

Many efficient exact branch and bound maximum clique solvers use approximate coloring to compute an upper bound on the clique number for every subproblem. This technique reasonably promises tight bounds on average, but never tighter than the chromatic number of the graph.

Li and Quan, 2010, AAAI Conference, p. 128–133 describe a way to compute even tighter bounds by reducing each colored subproblem to maximum satisfiability problem (MaxSAT). Moreover they show empirically that the new bounds obtained may be lower than the chromatic number.

Based on this idea this paper shows an efficient way to compute related “infra-chromatic” upper bounds without an explicit MaxSAT encoding. The reported results show some of the best times for a stand-alone computer over a number of instances from standard benchmarks.

A simple measure of similarity for the construction of the market graph is proposed. The measure is based on the probability of the coincidence of the signs of the stock returns. This measure is robust, has a simple interpretation, is easy to calculate and can be used as measure of similarity between any number of random variables. For the case of pairwise similarity the connection of this measure with the sign correlation of Fechner is noted. The properties of the proposed measure of pairwise similarity in comparison with the classic Pearson correlation are studied. The simple measure of pairwise similarity is applied (in parallel with the classic correlation) for the study of Russian and Swedish market graphs. The new measure of similarity for more than two random variables is introduced and applied to the additional deeper analysis of Russian and Swedish markets. Some interesting phenomena for the cliques and independent sets of the obtained market graphs are observed.

In this chapter, we present our enhancements of one of the most efficient exact algorithms for the maximum clique problem—MCS algorithm by Tomita, Sutani, Higashi, Takahashi and Wakatsuki (in Proceedings of WALCOM’10, 2010, pp. 191–203). Our enhancements include: applying ILS heuristic by Andrade, Resende and Werneck (in Heuristics 18:525–547, 2012) to find a high-quality initial solution, fast detection of clique vertices in a set of candidates, better initial coloring, and avoiding dynamic memory allocation. A good initial solution considerably reduces the search tree size due to early pruning of branches related to small cliques. Fast detecting of clique vertices is based on coloring. Whenever a set of candidates contains a vertex adjacent to all candidates, we detect it immediately by its color and add it to the current clique avoiding unnecessary branching. Though dynamic memory allocation allows to minimize memory consumption of the program, it increases the total running time. Our computational experiments show that for dense graphs with a moderate number of vertices (like the majority of DIMACS graphs) it is more efficient to store vertices of a set of candidates and their colors on stack rather than in dynamic memory on all levels of recursion. Our algorithm solves p_hat1000-3 benchmark instance which cannot be solved by the original MCS algorithm. We got speedups of 7, 3000, and 13000 times for gen400_p0.9_55, gen400_p0.9_65, and gen400_p0.9_75 instances, correspondingly.

In this article we use the modular decomposition technique for exact solving the weighted maximum clique problem. Our algorithm takes the modular decomposition tree from the paper of Tedder et. al. and finds solution recursively. Also, we propose algorithms to construct graphs with modules. We show some interesting results, comparing our solution with Ostergards algorithm on DIMACS benchmarks and on generated graphs.

We consider certain spaces of functions on the circle, which naturally appear in harmonic analysis, and superposition operators on these spaces. We study the following question: which functions have the property that each their superposition with a homeomorphism of the circle belongs to a given space? We also study the multidimensional case.

We consider the spaces of functions on the m-dimensional torus, whose Fourier transform is p -summable. We obtain estimates for the norms of the exponential functions deformed by a C1 -smooth phase. The results generalize to the multidimensional case the one-dimensional results obtained by the author earlier in “Quantitative estimates in the Beurling—Helson theorem”, Sbornik: Mathematics, 201:12 (2010), 1811 – 1836.

We consider the spaces of function on the circle whose Fourier transform is p-summable. We obtain estimates for the norms of exponential functions deformed by a C1 -smooth phase.

This proceedings publication is a compilation of selected contributions from the “Third International Conference on the Dynamics of Information Systems” which took place at the University of Florida, Gainesville, February 16–18, 2011. The purpose of this conference was to bring together scientists and engineers from industry, government, and academia in order to exchange new discoveries and results in a broad range of topics relevant to the theory and practice of dynamics of information systems. Dynamics of Information Systems: Mathematical Foundation presents state-of-the art research and is intended for graduate students and researchers interested in some of the most recent discoveries in information theory and dynamical systems. Scientists in other disciplines may also benefit from the applications of new developments to their own area of study.