Article
Human-centered text mining: A new software system
Concept discovery is a Knowledge Discovery in Databases (KDD) research field that uses human-centered techniques such as Formal Concept Analysis (FCA), Biclustering, Triclustering, Conceptual Graphs etc. for gaining insight into the underlying conceptual structure of the data. Traditional machine learning techniques are mainly focusing on structured data whereas most data available resides in unstructured, often textual, form. Compared to traditional data mining techniques, human-centered instruments actively engage the domain expert in the discovery process. This volume contains the contributions to CDUD 2011, the International Workshop on Concept Discovery in Unstructured Data (CDUD) held in Moscow. The main goal of this workshop was to provide a forum for researchers and developers of data mining instruments working on issues with analyzing unstructured data. We are proud that we could welcome 13 valuable contributions to this volume. The majority of the accepted papers described innovative research on data discovery in unstructured texts. Authors worked on issues such as transforming unstructured into structured information by amongst others extracting keywords and opinion words from texts with Natural Language Processing methods. Multiple authors who participated in the workshop used methods from the conceptual structures field including Formal Concept Analysis and Conceptual Graphs. Applications include but are not limited to text mining police reports, sociological definitions, movie reviews, etc.
The paper makes a brief introduction into multiple classifier systems and describes a particular algorithm which improves classification accuracy by making a recommendation of an algorithm to an object. This recommendation is done under a hypothesis that a classifier is likely to predict the label of the object correctly if it has correctly classified its neighbors. The process of assigning a classifier to each object involves here the apparatus of Formal Concept Analysis. We explain the principle of the algorithm on a toy example and describe experiments with real-world datasets.
In this paper we propose two novel methods for analyzing data collected from online social networks. In particular we will do analyses on Vkontake data (Russian online social network). Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users’ interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.
We combine bi- and triclustering to analyse data collected from the Russian online social network Vkontakte. Using biclustering we extract groups of users with similar interests and find communities of users which belong to similar groups. With triclustering we reveal users' interests as tags and use them to describe Vkontakte groups. After this social tagging process we can recommend to a particular user relevant groups to join or new friends from interesting groups which have a similar taste. We present some preliminary results and explain how we are going to apply these methods on massive data repositories.
Formal Concept Analysis (FCA) is an unsupervised clustering technique and many scientific papers are devoted to applying FCA in Information Retrieval (IR) research. We collected 103 papers published between 2003-2009 which mention FCA and information retrieval in the abstract, title or keywords. Using a prototype of our FCA-based toolset CORDIET, we converted the pdf-files containing the papers to plain text, indexed them with Lucene using a thesaurus containing terms related to FCA research and then created the concept lattice shown in this paper. We visualized, analyzed and explored the literature with concept lattices and discovered multiple interesting research streams in IR of which we give an extensive overview. The core contributions of this paper are the innovative application of FCA to the text mining of scientific papers and the survey of the FCA-based IR research.
An incremental algorithm to construct a lattice from a collection of sets is derived, refined, analyzed, and related to a similar previously published algorithm for constructing concept lattices. The lattice constructed by the algorithm is the one obtained by closing the collection of sets with respect to set intersection. The analysis explains the empirical efficiency of the related concept lattice construction algorithm that had been observed in previous studies. The derivation highlights the effectiveness of a correctness-byconstruction approach to algorithm development.