• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Article

A decision making process application for the slurry production in ceramics via fuzzy cluster and data mining

Gürbüz F., Pardalos P. M.
To increase productivity, companies are in search of techniques that enable them to make faster and more effective decisions. Data mining and fuzzy clustering algorithms can serve for this purpose. This paper models the decision making process of a ceramics production company using a fuzzy clustering algorithm and data mining. Factors that affect the quality of slurry are measured over time. Using this data, a fuzzy clustering algorithm assigns the degrees of memberships of the slurry for the different quality clusters. An expert can decide on acceptance or rejection of slurry based on calculated degrees of memberships. In addition, by using data mining techniques we generated some rules that provide the optimum conditions for acceptance of the slurry.