Article
Задача Эрдеша – Вершика для золотого сечения
Properties of Erdos measure and the invariant Erdos measure for the golden ratio and all values of the Bernoulli parameter are studies. It is proved that a shift on the two-sided Fibonacci compact set with invariant Erdos measure is isomorphic to the integral automorphism for a Bernoulli shift with countable alphabet. An effective algorithm for calculating the entropy of an invariant Erdos measure is proposed. It is shown that, for certain values of the Bernulli parameter, the algorithm gives the Hausdorff dimension of an Erdos measure to 15 decimal places.
Properties of Erdos measure and the invariant Erdos measure for the golden ratio and all values of the Bernoulli parameter are studies. It is proved that a shift on the two-sided Fibonacci compact set with invariant Erdos measure is isomorphic to the integral automorphism for a Bernoulli shift with countable alphabet.
Some connections of the theory of hidden markov chains with the graph theory and linear algebra in this paper
In this paper we propose a new machine learning concept called randomized machine learning, in which model parameters are assumed random and data are assumed to contain random errors. Distinction of this approach from "classical" machine learning is that optimal estimation deals with the probability density functions of random parameters and the "worst" probability density of random data errors. As the optimality criterion of estimation, randomized machine learning employs the generalized information entropy maximized on a set described by the system of empirical balances. We apply this approach to text classification and dynamic regression problems. The results illustrate capabilities of the approach.
We use a Markov chains models for the analysis of Russian stock market. First problem studied in the paper is the multiperiod portfolio optimization. We show that known approaches applied for the Russian stock market produce the phenomena of non stability and propose a new methods in order to smooth it. The second problem addressed in the paper is a structural changes on the Russian stock market after the financial crisis of 2008.We propose a hidden Markov chains model to analyse a structural changes and apply it for the Russian stock market.
Proceedings (ISSN 2504-3900) publishes publications resulting from conferences, workshops and similar events.
Let k be a field of characteristic zero, let G be a connected reductive algebraic group over k and let g be its Lie algebra. Let k(G), respectively, k(g), be the field of k- rational functions on G, respectively, g. The conjugation action of G on itself induces the adjoint action of G on g. We investigate the question whether or not the field extensions k(G)/k(G)^G and k(g)/k(g)^G are purely transcendental. We show that the answer is the same for k(G)/k(G)^G and k(g)/k(g)^G, and reduce the problem to the case where G is simple. For simple groups we show that the answer is positive if G is split of type A_n or C_n, and negative for groups of other types, except possibly G_2. A key ingredient in the proof of the negative result is a recent formula for the unramified Brauer group of a homogeneous space with connected stabilizers. As a byproduct of our investigation we give an affirmative answer to a question of Grothendieck about the existence of a rational section of the categorical quotient morphism for the conjugating action of G on itself.
Let G be a connected semisimple algebraic group over an algebraically closed field k. In 1965 Steinberg proved that if G is simply connected, then in G there exists a closed irreducible cross-section of the set of closures of regular conjugacy classes. We prove that in arbitrary G such a cross-section exists if and only if the universal covering isogeny Ĝ → G is bijective; this answers Grothendieck's question cited in the epigraph. In particular, for char k = 0, the converse to Steinberg's theorem holds. The existence of a cross-section in G implies, at least for char k = 0, that the algebra k[G]G of class functions on G is generated by rk G elements. We describe, for arbitrary G, a minimal generating set of k[G]G and that of the representation ring of G and answer two Grothendieck's questions on constructing generating sets of k[G]G. We prove the existence of a rational (i.e., local) section of the quotient morphism for arbitrary G and the existence of a rational cross-section in G (for char k = 0, this has been proved earlier); this answers the other question cited in the epigraph. We also prove that the existence of a rational section is equivalent to the existence of a rational W-equivariant map T- - - >G/T where T is a maximal torus of G and W the Weyl group.